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ABSTRACT

Similar software vulnerabilities recur because developers reuse
existing vulnerable code, or make similar mistakes when imple-
menting the same logic. Recently, various analysis techniques have
been proposed to find syntactically recurring vulnerabilities via
code reuse. However, limited attention has been devoted to seman-
tically recurring ones that share the same vulnerable behavior in
different code structures. In this paper, we present a general analysis
framework, called Tracer, for detecting such recurring vulnera-
bilities. Tracer is based on a taint analysis that can detect various
types of vulnerabilities. For a given set of known vulnerabilities, the
taint analysis extracts vulnerable traces and establishes a signature
database of them.When a new unseen program is analyzed, Tracer
compares all potentially vulnerable traces reported by the analysis
with the known vulnerability signatures. Then, Tracer reports a
list of potential vulnerabilities ranked by the similarity score. We
evaluate Tracer on 273 Debian packages in C/C++. Our experi-
ment results demonstrate that Tracer is able to find 281 previously
unknown vulnerabilities with 6 CVE identifiers assigned.

1 INTRODUCTION

Similar software vulnerabilities recur over time even across pro-
grams. One of the well-known reasons is the prevalence of code
reuse [22, 27, 34, 35, 48] that can lead to the spread of security
vulnerabilities in the reused code. In addition to such syntactic
recurrences, semantically similar vulnerabilities frequently recur
in unrelated codebases that are independently developed. One of
the reasons is that developers often make similar mistakes when
implementing the same standard concepts such as mathematical for-
mulas, laws of physics, protocols, or language interpreters [37, 43].
Another reason is common misconceptions due to complicated
low-level semantics of programming languages such as undefined
behaviors in C [13]. They can induce developers to write incor-
rect code with similar error patterns. According to a recent report
from Google, 6 out of 24 0-day vulnerabilities in 2020 were actually
variants of previously seen ones [43].

Although researchers have developed many successful tech-
niques to detect recurring security vulnerabilities, existing ap-
proaches have limitations in several aspects. Approaches based
on code similarity [22, 27, 32, 38, 48] aim at detecting recurring
vulnerabilities via code reuse. They generate signatures of known
vulnerabilities within a pre-defined boundary (e.g., file or function)
and compare syntactic patterns in a new program with the signa-
tures. These approaches are highly precise, scalable and general as
their approaches are based on syntactic matching. However, they
are usually unable to detect variants of known vulnerabilities with
completely different syntactic structures but with the same root
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causes. On the other hand, pattern-based static analyses [2, 3, 16]
estimate the semantics of target programs as well as consider their
syntactic patterns. This in turn enables the analyzer to detect vul-
nerabilities that have similar syntactic and semantic characteristics
of programs with known vulnerabilities. However, designing such
analyses requires static analysis expertise and incurs nontrivial
engineering burden.

To address this problem, we set out to build an effective software
immune system against recurring vulnerabilities. We identified the
following criteria to be satisfied for such a system:

• Accuracy: Does the system accurately report potential vulnera-
bilities with a low false positive rate?

• Robustness: Is the system able to find variants of vulnerabilities
that have the same root cause?

• Generality: Is the system applicable to a wide range of security
bugs?

• Scalability: Is the system applicable to large programs?
• Usability: Does the system provide easily interpretable reports?

In this paper, we present a signature-based static analysis for de-
tecting recurring vulnerabilities, Tracer, that is designed to satisfy
the above criteria. Tracer is based on a general taint analysis that
aims at a variety of security vulnerabilities such as integer over-
flow/underflow, format string, buffer overflow, command injection,
etc. The analyzer detects potentially vulnerable data flows from
untrusted inputs (so called, source) to security-sensitive functions
(so called, sink). We run the static analyzer on a codebase with
known vulnerabilities and identify the actual vulnerabilities in the
analysis results. Next, Tracer extracts traces on the data depen-
dency relations of the vulnerabilities from the source points to the
sink points. The traces are encoded as feature vectors that form the
signatures of the vulnerabilities. Once a new program is analyzed,
Tracer extracts traces of all the reported alarms in the program,
and derives their feature vectors in the same manner. Then, Tracer
compares the feature vectors of the alarms with those of the known
vulnerable traces using a typical similarity measure such as cosine
similarity. Finally, Tracer provides a list of alarms sorted by the
similarity score.

We implemented Tracer based on Facebook’s Infer analyzer [5]
and demonstrated the effectiveness on a suite of Debian packages
written in C/C++. According to our experimental results on 273
Debian packages, Tracer discovered 281 recurring vulnerabilities
that are similar to known CVEs, vulnerability examples in Juliet
test suite [4], and sample code in online tutorials for secure coding.

This paper makes the following contributions:

• We propose a general analysis framework, Tracer, for detecting
semantically recurring vulnerabilities. Tracer is applicable to a
wide range of vulnerabilities.
• We present a trace-based method for computing the similarity

of vulnerabilities. Our method is based on data dependencies of
alarms reported by a general taint analysis.
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• We evaluate the effectiveness of Tracer on 273 Debian packages.
We found 281 vulnerabilities with 6 CVE identifiers assigned.

2 OVERVIEW

2.1 Motivating Examples

We illustrate our approach with the programs with security vulner-
abilities in Figure 1. All three programs have similar issues related
to a certain kind of security vulnerability: overflowed integers can
be used as the size argument of memory allocation functions (e.g.,
malloc). Such integer overflows cause the program to allocate un-
intentionally small size of memory chunks that potentially leads to
buffer overflows.

Figure 1(a) shows the vulnerability in an image processing tool
gimp reported in 2009. The program reads a byte string from a given
file (line 10), transforms the string into an integer (line 12). Since
this value depends on the contents of the input file, the integer can
be arbitrarily large. The integer value at line 13 can also become
arbitrarily large because of the same reason. Then, the program
multiplies the integers that leads to an integer overflow (line 14).
Finally, the overflowed integer (rowbytes) is passed to function
ReadImage and used as an argument of malloc (line 21). Notice
that the size of the allocated buffer can be much smaller than what
the developer expected. Therefore, potential buffer overflows can
happen when the buffer is used to store the data of the input file
afterwards.

After 8 years, a similar vulnerability was found in another pro-
gram, sam2p depicted in Figure 1(b). sam2p is also an image pro-
cessing tool, so that it has a similar piece of code that reads a BMP
file. Because of exactly the same reason as gimp, this program is
also vulnerable. Notice that the code snippet is quite similar to
that of gimp. Conceptually, existing methods based on code clone
detection may help catch such recurring vulnerabilities given the
vulnerability in gimp as a signature. However, it is sometimes chal-
lenging in practice. Clone-based approaches typically compare two
pieces of code within a pre-defined syntactic boundary (e.g., func-
tions or blocks). This in turn hinders the vulnerability detection
when vulnerable behavior involves multiple functions as in the
examples. State-of-the-art tools [27, 48] heuristically choose a vul-
nerability signature function that contains the patches of the known
vulnerability (ReadBMP in the gimp case). However, this is still fran-
gible if the functions are large and contain considerable syntactic
differences. For example, ReadBMP in gimp consists of 382 lines
while bmp_load_image in samp2p has only 151 lines. Although the
essence of the vulnerability is the same, they have many discrepan-
cies in the other parts. For example, lines 7–8 in the two programs
are completely different, and sam2p, which is a C++ program, uses
new rather than malloc.

Moreover, recurring vulnerabilities are not always induced by
code clones. Developers often make similar mistakes when they
write programs that have typical or standard behavior both at a low
level (e.g., reading data from files or allocating heap memory blocks)
and a high-level (e.g., calculating area of square or processing an
image file). An example from libXcursor is shown in Figure 1(c).
Similar to the previous examples, the program reads data from an
input file (line 3), converts the input byte string to an integer (line 5),
and computes the multiplication of two arbitrary large integers

1 long ToL(char *pbuffer) {

2 return (puffer[0] | puffer[1] << 8 | puffer[2] << 16 | puffer[3] << 24);

3 }

4 short ToS(char *pbuffer) { return ((short)(puffer[0] | puffer[1] << 8)); }

5
6 gint32 ReadBMP(gchar *name) {

7 FILE *fd = fopen(name, "rb");

8 if (!fd) return -1;

9
10 if (fread(buffer, Bitmap_File_Head.biSize - 4, fd) != 0) // Read from a file

11 return -1;

12 Bitmap_Head.biWidth = ToL(& buffer[0x00]);

13 Bitmap_Head.biBitCnt = ToS(& buffer[0x0A]);

14 rowbytes = ((Bitmap_Head.biWidth * Bitmap_Head.biBitCnt - 1) / 32) * 4 + 4;

15 image_ID = ReadImage(rowbytes);

16 ...

17 }

18
19 gint32 ReadImage(int rowbytes) {

20 /* memory allocation with an overflowed size */

21 char *buffer = malloc(rowbytes);

22 /* uses of buffer */

23 }

(a) gimp-2.6.7 (CVE-2009-1570)

1 long ToL(char *pbuffer) {

2 return (puffer[0] | puffer[1] << 8 | puffer[2] << 16 | puffer[3] << 24);

3 }

4 short ToS(char *pbuffer) { return ((short)(puffer[0] | puffer[1] << 8)); }

5
6 bitmap_type bmp_load_image(FILE *fd) {

7 if (fread(buffer, 18, fd) || (strncmp((const char *)buffer, "BM", 2)))

8 FATALP("BMP:␣not␣a␣valid␣BMP␣file");

9
10 if (fread(buffer, Bitmap_File_Head.biSize - 4, fd) != 0) // Read from a file

11 FATALP("BMP:␣Error␣reading␣BMP␣file␣header␣#3");

12 Bitmap_Head.biWidth = ToL(&buffer[0x00]);

13 Bitmap_Head.biBitCnt = ToS(&buffer[0x0A]);

14 rowbytes = ((Bitmap_Head.biWidth * Bitmap_Head.biBitCnt - 1) / 32) * 4 + 4;

15 image.bitmap = ReadImage(rowbytes);

16 ...

17 }

18
19 unsigned char *ReadImage(int rowbytes) {

20 /* memory allocation with an overflowed size */

21 unsigned char *buffer = (unsigned char *) new char[rowbytes];

22 /* uses of buffer */

23 }

(b) sam2p-0.49.4 (CVE-2017-16663)

1 XcursorBool _XcursorReadUInt(XcursorFile *file, XcursorUInt *u) {

2 unsigned char bytes[4];

3 if ((*file->read)(file, bytes, 4) != 4) // Read from a file

4 return XcursorFalse;

5 *u = (bytes[0] | (bytes[1] << 8) | (bytes[2] << 16) | (bytes[3] << 24));

6 return XcursorTrue;

7 }

8
9 XcursorImage *_XcursorReadImage(XcursorFile *file) {

10 XcursorImage head;

11 XcursorImage *image;

12 if (!_XcursorReadUInt(file, &head.width)) return NULL;

13 if (!_XcursorReadUInt(file, &head.height)) return NULL;

14 image = XcursorImageCreate(head.width, head.height);

15 ...

16 }

17
18 XcursorImage *XcursorImageCreate(int width, int height) {

19 XcursorImage *image;

20 /* memory allocation with an overflowed size */

21 image = malloc(sizeof(XcursorImage) + width * height * sizeof(XcursorPixel));

22 /* initialize struct image */

23 return image;

24 }

(c) libXcursor-1.1.14 (CVE-2017-16612)

Figure 1: Examples code excerpted from similar vulnerabili-

ties from different programs.
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Figure 2: System overview of Tracer

(line 21). The multiplication also leads to an integer overflow at the
same line that can cause buffer overflows afterward. Notice that the
root cause of the vulnerability is the same as the other examples.
However, libXcursor has completely different syntactic structures.
For example, libXcursor uses an indirect call to fread at line 3 while
the other programs directly call the function.

Existing approaches are not appropriate to detect such semanti-
cally recurring vulnerabilities. Clone-based approaches [27, 48] are
not effective to detect this vulnerability, given the vulnerability in
gimp or sam2p as a signature. While the essence of the vulnerability
is still the same, the different code structure of libXcursor funda-
mentally hinders the detectability of the tools. Static bug finding
tools that aim at general integer overflows may detect this vulnera-
bility but also can incur many false positives. One can also design
a specialized static analysis dedicated to each pattern. However,
it would impose a high engineering burden while producing sub-
optimal solutions. For example, the TaintedAllocationSize checker
from Github’s CodeQL [8], which is a state-of-the-art pattern-based
analyzer, does not detect the particular vulnerabilities in Figure 1.

2.2 Our Approach

Now, we introduce how Tracer can detect recurring vulnerabilities.
Our approach is shown in Figure 2. In the rest of this section, we
explain the procedure of each component of Tracer and show the
vulnerabilities in sam2p and libXcursor can be accurately detected
by Tracer given the one in gimp as a signature.

2.2.1 Taint Analysis. Tracer is based on a generic taint analysis
that can be instantiated to bug detectors for various types of security
vulnerabilities. The analysis computes potential data flows from
untrusted inputs (sources) to sensitive functions (sinks) with a
simple abstract domain for tainted values: T = {⊥𝑡 ,⊤𝑡 } where
each element denotes that the value is not tainted (⊥𝑡 ) and may be
tainted (⊤𝑡 ). For example, in Figure 1(a), the malicious data flow
from fread to malloc is detected by the analyzer.

One may elaborate the analysis with other abstract domains
along with the basic taint domain for a more accurate analysis. In
our implementation, we have a simple abstract domain I = {⊥𝑜 ,⊤o}
for estimating whether an integer value is potentially overflowed
(⊤o) or not (⊥𝑜 ). For example, an untrusted input value is initially
tainted (⊤t ) but not overflowed (⊥𝑜 ). Once the value is used as
an operand of an operator that can potentially introduce integer
overflow (e.g., +, <<), the result becomes tainted (⊤t ) and over-
flowed (⊤o). For the malloc case, our analyzer raises an alarm only

when the abstract value of the argument is both tainted (⊤t ) and
overflowed (⊤o). By doing so, we do not report trivial false alarms
while efficiently computing malicious data flows. The details of our
implementation is described in Section 4.

2.2.2 Traces on Data Dependency Graphs. We run the taint anal-
ysis on a given set of programs whose vulnerabilities are already
known. For each known vulnerability, Tracer extracts vulnerable
traces from the source and sink points based on the static analysis
result. To filter out statements that are irrelevant to the vulner-
ability as much as possible, we derive vulnerable traces on data
dependency graphs rather than control-flow graphs. Once the taint
analysis detects potentially malicious flows in gimp and libXcursor

in Figure 1, Tracer derives data dependency graphs and extracts
the vulnerable traces from the sources to sinks as shown in Figure 3.
Such traces will be used as signatures of vulnerabilities.

The same procedure will be applied for new target programs.
Instead, Tracer extracts all possible traces from sources to sinks
of the reported alarms while unrolling each loop only once. These
traces will be compared to the signature traces.

2.2.3 Feature Representation. Next, Tracer encodes each trace as
an integer feature vector. We design a program-independent and
common feature space that can represent transferable knowledge
for vulnerabilities. Our feature vector consists of two parts: low-
level and high-level features.

Low-level features represent the frequencies of primitive oper-
ators (e.g., *, <<) and common APIs (e.g., strlen) on the trace.
Figure 3(a) shows the feature vector of the vulnerable trace in gimp.
Likewise, the feature vector for libXcursor is shown in Figure 3(b).

On the other hand, high-level features describe detailed behavior
of traces that are not noticeable using only the low-level ones. We
manually designed 5 high-level features. In general, they charac-
terize crucial behavior of programs that can affect our target vul-
nerabilities. For example, one of our features IfSmallerThanConst

checks whether a trace has a conditional statement whose condi-
tion is of the form x < c where x is a variable and c is a constant.
This pattern is common when programs prevent integer overflows.
Suppose there exists such an expression in a trace of the target
program, but not in the signature trace. Then, the target trace is
deemed to be safe and the similarity score becomes lower.

2.2.4 Similarity Checking. Once a new program is analyzed, Tracer
extracts all alarm traces and compares them against the known
vulnerability signatures. Since all the traces are encoded as vectors,

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

fread

(puffer[0] | puffer[1] << 8 | puffer[2] << 16 | puffer[3] << 24)

((Bitmap_Head.biWidth * Bitmap_Head.biBitCnt - 1) / 32) * 4 + 4;

malloc

⟨fread : 1, | : 3, « : 3, * : 2, + : 1, - : 1, malloc : 1⟩
(a) gimp in Figure 1(a)

fread

(bytes[0] | (bytes[1] << 8) | (bytes[2] << 16) | (bytes[3] << 24))

sizeof(XcursorImage) + width * height * sizeof(XcursorPixel)

malloc

⟨fread : 1, | : 3, « : 3, * : 2, + : 1, - : 0, malloc : 1⟩
(b) libXcursor in Figure 1(c)

Figure 3: Vulnerable traces and their feature vectors. The

blue and red nodes represent the source and sink points,

respectively.

Algorithm 1: Tracer(Π,A, 𝑃) where Π is a set of feature
vectors of signature traces, A is a static analyzer, and 𝑃 is
the program to be analyzed.
1 Ω ← A(𝑃);
2 𝐺 ← build_dfg(𝑃);
3 𝑅 ← ∅;
4 for 𝜔 ∈ Ω do

5 T𝜔 ← extract_traces(𝐺,𝜔);
6 Π𝜔 ← {generate_feature(𝜏) | 𝜏 ∈ T𝜔 };
7 𝑠 ← max{Sim(𝜋𝜔 , 𝜋) | 𝜋𝜔 ∈ Π𝜔 , 𝜋 ∈ Π};
8 𝑅 ← 𝑅{𝜔 ↦→ 𝑠};
9 return 𝑅;

we can use any common similarity measures. In our implemen-
tation, we use cosine similarity which is a well-known similarity
measure for two vectors. For example, the cosine similarity of the
two feature vectors in Figure 3 is computed as follows:

⟨1, 3, 3, 2, 1, 1, 1⟩ · ⟨1, 3, 3, 2, 1, 0, 1⟩
| |⟨1, 3, 3, 2, 1, 1, 1⟩| | | |⟨1, 3, 3, 2, 1, 0, 1⟩| | = 0.98

Therefore, Tracer can precisely detect semantically recurring vul-
nerabilities with high similarity scores.

3 FRAMEWORK

In this section, we formalize our approach. The overall procedure
of Tracer is described in Algorithm 1. Tracer first analyzes the
target program and derives a set of alarms (line 1). Next, Tracer
computes the data dependency graph of the program (line 2). For
each alarm of the program, the algorithm extracts a set of traces

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐸 → 𝑛 | 𝑥 | 𝐸 + 𝐸 | 𝐸 − 𝐸 | source𝑙 ()
𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶 → 𝑥 := 𝐸 | assume(𝑥 < 𝑛) | sink(𝐸)

Figure 4: Language

(line 5) and encodes them as feature vectors (line 6). Finally, we
compare each generated feature vector of the alarm 𝜔 with vulner-
ability signature traces. The score of the alarm is determined as
the maximum similarity score of them (line 7). In the rest of this
section, we formalize the details of each component of Tracer.

3.1 Program

A program is represented as a control flow graph ⟨C,→⟩ where C is
the set of control points and (→) ⊆ C×C is the control-flow relation.
Each control point is associated with a command. We assume a
simple imperative language defined in Figure 41. An expression is
an integer, variable, addition operation, subtraction operation, or
call to a source function. A command is an assignment, assume,
or call to a sink function. source and sink represent functions
that read untrusted inputs (e.g., fread), and use the arguments in a
sensitive context (e.g., malloc), repectively. We assume that each
source point is associated with a unique label 𝑙 .

3.2 Generic Taint Analysis

We present a generic static analysis for taint tracking. The goal of
the analysis is to estimate potential data flows from source points
to sink points. The analysis can be instantiated to a family of taint
analyses that are applicable to common types of vulnerabilities such
as integer overflow, format string, or command injection [18, 19, 45].
We will present the detailed instantiation for our implementation
in Section 4.

Abstract domains are shown in Figure 5(a). For a given program,
our analyzer computes an abstract state (∈ S) that is a mapping
from control points to the corresponding abstract memories. An
abstract memory (∈ M) is a mapping from variables (∈ X) to their
abstract values. An abstract value consists of two parts: the abstract
domains for taint information (T) and value information (V). The
taint domain is the power set of source labels. For taint checking, we
collect all possible source points that lead to the value. The value do-
main represents general information of variables. For instance, one
may define a simple abstract domain that only represents whether
a value is overflowed, or a more sophisticated domain such as the
interval domain. Our design choice will be explained in Section 4.
Note that the value domain is not mandatory but used to improve
the precision of the analysis.

Abstract semantics is defined in Figure 5(b). The abstract se-
mantics for expressions [[𝐸]] computes the abstract value of an
expression given an abstract memory. We assume that the value do-
mainV is accompanied by an evaluation functionV : 𝐸 → M→ V
that computes the abstract value for an expression. Constant values
(𝑛) are not tainted and introduce an abstract value according toV .
For binary operations (+ and −), we join the taint information of
two operands and compute the results of the corresponding abstract
operator. For source points, the analyzer collects the labels, which
will be used for taint checking, and computes its abstract value.
1For brevity, we only consider this simple language but our implementation handles
the full features of C/C++.
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(Abstract state) S = C→ M
(Abstract memory) M = X→ T × V
(Taint) T = ℘(C)

(a) Abstract domains

[[𝐸]] : M→ T × V
[[𝑛]] (𝑚) = ⟨∅,V(𝑛) (𝑚)⟩
[[𝑥]] (𝑚) = 𝑚(𝑥)

[[𝐸1 + 𝐸2]] (𝑚) = ⟨𝑇1 ∪𝑇2,V(𝐸1) (𝑚) +V V(𝐸2) (𝑚)⟩
[[𝐸1 − 𝐸2]] (𝑚) = ⟨𝑇1 ∪𝑇2,V(𝐸1) (𝑚) −V V(𝐸2) (𝑚)⟩
[[source𝑙 ()]] (𝑚) = ⟨{𝑙},V(source) (𝑚)⟩

[[𝐶]] : M→ M
[[𝑥 := 𝐸]] (𝑚) = 𝑚{𝑥 ↦→ [[𝐸]] (𝑚)}

[[assume(𝑥 < 𝑛)]] (𝑚) = 𝑚

[[sink(𝐸)]] (𝑚) = 𝑚

(b) Abstract semantics

Figure 5: Generic Taint Analysis

The abstract semantics for commands [[𝐶]] computes the abstract
memory after the execution of𝐶 given an abstract memory. Finally,
the analyzer computes the abstract semantics of a program that
is defined by the least fixed point of the following function as is
standard:

𝐹 (𝑋 ) = 𝜆𝑐 ∈ C.[[𝑐]] (
⊔
𝑐′→𝑐

𝑋 (𝑐 ′)) .

Tracer derives a set of alarms from the analysis results. An
alarm of the taint analysis 𝜔 = ⟨𝑐1, 𝑐2⟩ is a pair of two control
points where 𝑐1 is a source point and 𝑐2 is a sink point that uses the
untrusted data from the source 𝑐1. We assume that the analysis is
accompanied by an alarm inspection function Q : C→ M→ ℘(C).
Given a sink point 𝑐 and an abstract memory𝑚 at 𝑐 from the analysis
result, Q(𝑐) (𝑚) is a set of source points fromwhich vulnerable data-
flows start to the sink point 𝑐 . Once an analysisA(𝑃) for program 𝑃

is completed, a set of alarms Ω is derived using the alarm inspection
function.

Definition 3.1 (Alarm). Let C𝑠 is a set of all sink points of a
program. A set of alarms Ω of the program is defined as follows:

Ω = {⟨𝑐1, 𝑐2⟩ | 𝑐2 ∈ C𝑠 , 𝑐1 ∈ Q(𝑐2) (𝑚)}

where 𝑚 is the abstract memory at 𝑐2 according to the analysis
results.

3.3 Data Dependency Graph and Tainted Traces

Next, we build a data dependency graph for the input program.
Given a control-flow graph ⟨C,→⟩ of the program, the data de-
pendency graph is defined as a tuple ⟨C,;⟩. The data dependency
graph has the same set of nodes but is based on data dependency
relations rather than control-flow relations. We follow the standard
notion of data dependency:

𝑐1 ; 𝑐2 ⇐⇒ 𝑐1 →+ 𝑐2 ∧ 𝑥 is defined at 𝑐1 ∧ 𝑥 is used at 𝑐2
∧ 𝑥 is not re-defined in any points between 𝑐1 and 𝑐2 .

where 𝑥 is a program variable. Such data dependency relation can
be computed during the static analysis by bookkeeping additional
information about the definition and use points.

Once a data dependency graph is established, we extract tainted
traces of alarms. For each alarm, Tracer derives all paths from the
source point to the sink point on the data dependency graph.

Definition 3.2 (Tainted Trace). Given an alarm 𝜔 = ⟨𝑐0, 𝑐𝑛⟩, a set
of tainted traces T𝜔 ⊆ C+ is defined as follows:

T𝜔 = {⟨𝑐0, . . . , 𝑐𝑛⟩ | ∀𝑖 ∈ [0, 𝑛 − 1] . 𝑐𝑖 ; 𝑐𝑖+1}.

In the presence of loops, there can exist infinitely many traces of an
alarm. In our implementation, Tracer unrolls each loop by once.

3.4 Feature Vector and Similarity Score

Tracer transforms each tainted trace to a feature vector that en-
codes the characteristics of the trace. We define a set of features to
capture essential knowledge of vulnerable traces that is reusable
across different programs. Tracer uses numerical features 𝑓𝑖 :
C+ → N. Given a set of 𝑛 features {𝑓1, . . . , 𝑓𝑛}, Tracer derives a
feature vector of a trace 𝜏 : ⟨𝑓1 (𝜏), . . . , 𝑓𝑛 (𝜏)⟩. Then, a set of feature
vectors Π𝜔 of an alarm 𝜔 is defined as follows:

Π𝜔 = {⟨𝑓1 (𝜏), . . . , 𝑓𝑛 (𝜏)⟩ | 𝜏 ∈ T𝜔 }

Finally, Tracer compares the feature vectors of alarms in pro-
gram 𝑃 to the set of all pre-computed feature vectors of known vul-
nerabilities, ΠS . The set ΠS can be derived using the same steps de-
scribed in the previous sections except that only known true alarms
are considered. We also assume a function Sim : N𝑛 ×N𝑛 → R that
computes the similarity of two feature vectors. Using the similarity
function, the score of an alarm is defined as the maximum similarity
score between alarm traces and signature traces.

Definition 3.3 (Score of alarm). Given an alarm 𝜔 and a set of
feature vectors of signatures ΠS , the score of the alarm is defined
as follows:

max{Sim(𝜋𝜔 , 𝜋) | 𝜋𝜔 ∈ Π𝜔 , 𝜋 ∈ ΠS}

where Π𝜔 is a set of feature vectors of alarm 𝜔 .

4 INSTANTIATION

This section describes the details of our system. First, we instantiate
the generic taint analysis to detect common types of vulnerabilities.
Our implementation aims at detecting integer overflows, integer
underflows, buffer overflows, format string bugs, or command in-
jections. Then, we explain our feature design.

4.1 Abstract Domains and Semantics

We define the abstract domain V and functionV that are used in
our implementation in Figure 6. The abstract domain V constitutes
two parts: the overflow domain and the underflow domain. The
overflow domain I (resp., underflow domain I) represents whether
the value may be overflowed (⊤𝑜 ) (resp., underflowed) or not (⊥𝑜 ).
The function V : 𝐸 → M → V approximates the chances of
integer overflows and underflows for a given expression and an
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(Abstract value) V = I × I
(Overflow) I = {⊥𝑜 ,⊤𝑜 }
(Underflow) I = {⊥𝑢 ,⊤𝑢 }
V(𝑛) (𝑚) = ⟨⊥𝑜 ,⊥𝑢⟩

V(𝐸1 + 𝐸2) (𝑚) = ⟨⊤𝑜 ,𝑈1 ⊔𝑈2⟩
whereV(𝐸1) (𝑚) = ⟨_,𝑈1⟩
andV(𝐸2) (𝑚) = ⟨_,𝑈2⟩

V(𝐸1 − 𝐸2) (𝑚) = ⟨𝑂1 ⊔𝑂2,⊤𝑢⟩
whereV(𝐸1) (𝑚) = ⟨𝑂1, _⟩
andV(𝐸2) (𝑚) = ⟨𝑂2, _⟩

V(source) (𝑚) = ⟨⊥𝑜 ,⊥𝑢⟩

Figure 6: Abstract domains

abstract memory. Constant values (𝑛) are not overflowed and un-
derflowed. For addition (resp., subtraction) operators, we conser-
vatively approximate the value to be potentially overflowed (resp.,
underflowed).

For the five types of vulnerabilities, we use the following alarm
inspection function Q:

Q(𝑐) (𝑚) = Q𝑇 (𝑐) (𝑚) ∪ Q𝑂 (𝑐) (𝑚) ∪ Q𝑈 (𝑐) (𝑚) .
Each sub-function is defined as follows:

Q𝑇 (𝑐) (𝑚) = {𝑐0 | 𝑐0 ∈ 𝑇, ⟨𝑇, _, _⟩ = [[𝐸]] (𝑚)}
Q𝑂 (𝑐) (𝑚) = {𝑐0 | 𝑐0 ∈ 𝑇, ⟨𝑇,⊤𝑜 , _⟩ = [[𝐸]] (𝑚)}
Q𝑈 (𝑐) (𝑚) = {𝑐0, | 𝑐0 ∈ 𝑇, ⟨𝑇, _,⊤𝑢⟩ = [[𝐸]] (𝑚)}

where 𝑐 is a sink point and the abstract memory at 𝑐 is𝑚. Function
Q𝑇 collects all the source points of a sink point if the argument of
a sink function is tainted. Tracer uses Q𝑇 to detect format string,
command injection, and buffer overflow at printf-like functions,
exec-like functions, and memcpy-like functions, respectively. Q𝑂
and Q𝑈 additionally check whether the argument can be poten-
tially overflowed and underflowed, respectively. The functions are
used to detect malicious uses of memory allocations (e.g., malloc)
with an overflowed (i.e., unintentionally small) argument, and mem-
ory copies (e.g., memset) with an underflowed (i.e., unintentionally
large) argument.

4.2 Features and Similarity Measure

We have designed a set of features for tainted alarm traces that
are shown in Table 1. The set of features comprises two categories:
low-level and high-level features. The low-level features describe
the frequencies of the primitive operator (e.g., + and «) and the
standard library calls (e.g., strlen and strcmp) on a trace. On the
other hand, the high-level features are designed to capture deeper
contexts of traces. Instead of counting individual occurrences of
operators, the features describe relationships among expressions
and operators. Especially, we identify typical code patterns that
appear in patches of common vulnerabilities.

Tracer uses cosine similarity which is a well-known measure of
similarity between two vectors. Given two feature vectors 𝜋1 and
𝜋2, the similarity is defined as follows:

Sim(𝜋1, 𝜋2) =
𝜋1 · 𝜋2
| |𝜋1 | | | |𝜋2 | |

.

Table 1: Features of traces. 𝐸 and 𝐾 represent an arbitrary

expression and a constant, respectively.

Name Description

NumOfOpX The number of primitive operator X on the trace
NumOfLibX The number of calls to library X on the trace

LargerThanConst The number of expressions of the form 𝐸 > 𝐾 or 𝐸 ≥ 𝐾
SmallerThanConst The number of expressions of the form 𝐸 < 𝐾 or 𝐸 ≤ 𝐾
EqualToVar The number of expressions of the form 𝐸 == 𝐾
NotEqualToVar The number of expressions of the form 𝐸 != 𝐾
EqualToPercentage The number of expressions of the form 𝐸 == ‘%’

5 EXPERIMENT

Our evaluation is designed to answer the following questions:
• RQ1: How effective is Tracer for finding unknown recurring

vulnerabilities?
• RQ2: How accurate is Tracer comparedwith existing approaches?
• RQ3: How scalable is Tracer to large programs?
All experiments were conducted on Linux machines with Intel
Xeon 2.90GHz. We set the timeout to one hour for running the
static analysis for each package.

5.1 Experimental Setup

5.1.1 Implementation. We implemented Tracer on top of Face-
book’s Infer analyzer [5]. The taint analyzer is designed as described
in the previous sections. We use pointer information computed by
Infer’s buffer overrun checker. Following Infer’s framework, our
taint analysis is designed to be a modular interprocedural analy-
sis (i.e., context-sensitive). For each benchmark, we run 20 tasks
in parallel. Our taint analysis checks five common vulnerabilities
described in Section 4: integer overflows, integer underflows, buffer
overflows, command injections and format string bugs.

5.1.2 Signature programs. We collected signature programs from
different sources of real-world and synthetic vulnerabilities:
(1) Real-world vulnerabilities: We collected 16 vulnerabilities

that can be reproduced by our taint analysis from the CVE
report [10] and prior work [18, 19].

(2) Juliet test suite [4]: Juliet Test Suite consists of a large set of
small programs each of which has a common vulnerability. We
used 4,437 programs that have the same types of vulnerabilities
handled by our analysis.

(3) Online tutorial: We collected 5 examples from online tutorials
on secure programming provided by OWASP [14].

5.1.3 Benchmarks. We evaluated Tracer using 273 Debian pack-
ages written in C/C++. The programs were collected from 16 com-
mon categories of Debian packages [12] such as web, sound, utils,
etc. For each category, we selected 20 packages such that our taint
analysis reports at least one alarm. For categories that have less
than 20 packages, we used all packages in the categories.

5.1.4 Baselines. We compare Tracer with state-of-the-art bug
detection tools from two categories: 1) clone-based vulnerability
detector 2) pattern-based static analyzer. For each category, we
chose one tool that was recently proposed and is publicly available:
VUDDY [27] and Github’s CodeQL [2]. We ran the baselines for the
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1 bool ssgLoadTGA(...) {

2 GLubyte header[18];

3 fread(header, 18, 1, f);

4 ...

5 int xsize = get16u(header + 12);

6 int ysize = get16u(header + 14);

7 int bits = header[16];

8 ...

9 // potential integer overflow

10 GLubyte *image = new GLubyte [ (bits / 8) * xsize * ysize ];

11 ...

12 }

13
14 inline int get16u(const GLubyte *ptr) { return (ptr[0] | (ptr[1] << 8)); }

Figure 7: An integer overflow discovered in libplib1-1.8.5 that
is similar to the one from sam2p-0.49.4 in Figure 1(b).

same types of vulnerabilities handled by Tracer. For VUDDY, we se-
lected the reported alarms based on their CWE ID [11] that matches
the vulnerability types. For CodeQL, we ran all their security-related
queries dedicated to the corresponding CWE IDs [7] of the types.

5.2 RQ1: Effectiveness

This section shows how effective Tracer is for detecting previ-
ously unknown vulnerabilities in the Debian packages. For a fair
comparison, we count the number of sinks rather than source-sink
pairs as shown in the previous section, because the other baselines
only report sink points. We manually inspected all the reported
alarms whose similarity scores are larger than 0.85. Furthermore,
we randomly selected 100 alarms below the threshold and manually
inspected them.

Tracer found 281 new vulnerabilities in 62 packages. Among
them, 108 vulnerabilities have been confirmed by the developers
and 6 CVEs have been assigned as of writing this paper. Table 2
shows the true alarms confirmed by the developers2. We observed
that Tracer can detect various types of vulnerabilities using the
signatures from different sources including known CVEs or syn-
thetic vulnerabilities. Most of the true alarms have high similarity
scores. We will discuss the detailed distribution of the scores in the
next section.

Tracer is able to detect new vulnerabilities that are similar to
known ones. Figure 7 shows a vulnerability found in libplib1. The
signature that gives the highest score for the case is sam2p in Fig-
ure 1(b) which is itself a recurring vulnerability similar to the one in
Figure 1(a). We also notice that Tracer can effectively discover real-
world security bugs using synthetically generated toy examples.
Figure 8 shows an integer overflow vulnerability in dia detected by
Tracer and a signature vulnerability from Juliet test suite. Notice
that they have completely different syntactic structures. For exam-
ple, the vulnerability in dia involves three function calls including
one indirect call, as well as complicated pointer dereferences. On the
other hand, the synthetic code has an extremely simple structure.
However, they have the same root cause of the vulnerabilities. Both
of the programs read an external input using fscanf, and cause
an integer overflow by multiplying the input value with another
integer value. Tracer exactly detects the same vulnerable behavior
from the two programs and set the similarity score to 1.0.

2The full list of discovered vulnerabilities is available in the supplementary material.

1 void CWE190_Integer_Overflow__int64_t_fscanf_square_01_bad() {

2 int64_t data;

3 data = 0LL;

4 fscanf (stdin, "%" SCNd64, &data);

5 // potential integer overflow

6 int64_t result = data * data;

7 char *p = malloc(result);

8 }

(a) Juliet test suite (CWE-190)

1 static DiaObject *fig_read_polyline(FILE *file, DiaContext *ctx) {

2 fscanf(file, "%d␣%d␣%d␣%d␣%d␣%d␣%d␣%d␣%lf␣%d␣%d␣%d␣%d␣%d␣%d\n", ..., &npoints)

3 newobj = create_standard_polyline(npoints, ...);

4 ...

5 }

6
7 DiaObject *create_standard_polyline(int num_points, ...) {

8 pcd.num_points = num_points;

9 new_obj = otype->ops->create(NULL, &pcd, &h1, &h2);

10 ...

11 }

12
13 static DiaObject *polyline_create(Point *startpoint, void *user_data,

14 Handle **handle1, Handle **handle2) {

15 MultipointCreateData *pcd = (MultipointCreateData *)user_data;

16 polyconn_init(poly, pcd->num_points);

17 ...

18 }

19
20 void polyconn_init(PolyConn *poly, int num_points) {

21 // potential integer overflow

22 poly->points = g_malloc(num_points * sizeof(Point));

23 ...

24 }

(b) dia-0.97.3

Figure 8: An integer overflowbug india-0.97.3 and a signature
vulnerability from Juliet test suite.

Also, for other types of vulnerabilities, Tracer can detect re-
curring vulnerabilities that are similar to existing ones. Figure 9
depicts a buffer overflow error in gv. This bug happens because
the program reads an untrusted string using getenv that is used
to construct a new string via sprintf. The vulnerable behavior is
described in a tutorial by OWASP [36]. While the example code is
simple, the real-world vulnerability involves complicated aliases
and indirect assignments. Nevertheless, Tracer can find that the
essence of the bug is actually the same as the tutorial example as
the static analyzer estimates the detailed semantics.

Tracer’s similarity measure not only prioritizes similar bugs,
but also effectively suppresses false alarms. Figure 10(a) shows an
alarm that is falsely identified by our taint analysis in gnuplot. This
alarm looks similar to the vulnerability in Figure 9(a). However,
the call to sprintf is safe because the program always allocates
enough memory blocks using strlen and addition operations. This
behavior is captured by our features. Figure 10(b) shows another
example of a false alarm in grass. Since there is a bound checking
for external user inputs, the integer overflow will never occur. This
is also captured by one of the high-level features LargerThanConst.
Notice that these features only appear in the false alarm traces, not
in the signatures. This in turn leads to a lower score of these alarms
(0.82–0.88) and ranks them below many other true alarms.

Overall, the experimental results show that Tracer is effective
to detect semantically recurring vulnerabilities. In particular, our
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Table 2: List of new vulnerabilities detected by Tracer. Signature shows the sources of vulnerability signatures and Score

represents the similarity scores between the true alarms and the signatures. This table reports only true alarms confirmed by

the developers as of writing this paper and"indicates the vulnerabilities whose CVE IDs are assigned. The information of the

remaining vulnerabilities is available in the supplementary material.

Program Bugs Bug Type Score Signature CVE Assigned

bsdutils 1 Integer Overflow 1 Juliet-CWE190 "

dia 3 Integer Overflow 1 Juliet-CWE190 "

htmldoc 3 Integer Overflow 0.90-0.95 CVE-2017-9181 "

dcraw 3 Integer Overflow 0.93-0.94 CVE-2017-9181 "

libplib1 15 Integer Overflow 0.76-0.93 shntool-3.0.5 [18] "
libkrb5support0 2 Integer Overflow 1 Juliet-CWE190 -
groff 1 Integer Overflow 1 Juliet-CWE190 -
xsane 35 Integer Overflow 0.87-1.00 Juliet-CWE190 -
darktable 5 Integer Overflow 1 Juliet-CWE680 -
siril 20 Integer Overflow 0.87-1.00 Juliet-CWE680 -
nageru 1 Integer Overflow 0.87 CVE-2017-16663 -
sane 1 Integer Overflow 0.87 CVE-2017-9181 -
drawxtl 1 Integer Overflow 0.79 CVE-2017-9181 -
libmjpegutils-2.1-0 2 Buffer Overflow 1 OWASP tutorial -
libaudio2 1 Buffer Overflow 1 OWASP tutorial -
xbuffy 1 Buffer Overflow 1 OWASP tutorial -
xfig 2 Buffer Overflow 1 OWASP tutorial -
gv 4 Buffer Overflow 1 OWASP tutorial -
nedit 5 Buffer Overflow 1 OWASP tutorial -
nickle 1 Buffer Overflow 1 OWASP tutorial -
libpano13-3 1 Format String 0.59 mp3rename-0.6 [18] "

1 int main(void) {

2 char *ptr_h;

3 char h[64];

4 ptr_h = getenv("HOME");

5 if (ptr_h != NULL) {

6 // potential buffer overflow

7 sprintf(h, "Your␣home␣directory␣is:␣%s␣!", ptr_h);

8 printf("%s\n", h);

9 }

10 return 0;

11 }

(a) OWASP tutorial
1 XrmDatabase resource_buildDatabase(...) {

2 char locale1[100];

3 char loc_lang[100];

4 char *locale = getenv("LC_ALL");

5 String s = getenv("XUSERFILESEARCHPATH");

6 char *cP = loc_lang;

7 char *cL = locale;

8 ...

9 while (*cL) {

10 ...

11 *cP++ = *cL++;

12 }

13 *cP = 0;

14
15 if (s == NULL || !strcasecmp(s, "False")) {

16 // potential buffer overflow

17 sprintf(locale1, "noint:%s%s", loc_lang, ...);

18 ...

19 }

20 }

(b) gv-3.7.4

Figure 9: A buffer overflow bug in gv-3.7.4 and a signature

vulnerability from an OWASP tutorial.

1 generic *gp_alloc(size_t size, ...) { } // wrapper of malloc

2
3 static int LUA_init_lua(void) {

4 char *script_fqn;

5 char *gp_lua_dir = getenv("GNUPLOT_LUA_DIR");

6 ...

7 // allocation with a large enough length

8 script_fqn = gp_alloc(strlen(gp_lua_dir) + ... + 2, ...);

9 // potential buffer overflow (false alarm)

10 sprintf(script_fqn, "%s%c%s", gp_lua_dir, ...);

11 ...

12 }

(a) gnuplot-5.2.8
1 SHPHandle SHPAPI_CALL SHPOpenLL(...) {

2 SHPHandle psSHP;

3 uchar *pabyBuf = (uchar *)malloc(100);

4 fread(pabyBuf, 100, 1, psSHP->fpSHX);

5 psSHP->nRecords = pabyBuf[27] + pabyBuf[26] * 256 + ...;

6 ...

7 // bound checking

8 if (psSHP->nRecords > 256000000) {

9 return (NULL);

10 }

11 ...

12 // false alarm (integer overflow)

13 int32 *panSHX = (int32 *)malloc(sizeof(int32) * 2 * psSHP->nRecords);

14 }

(b) grass-7.8.2

Figure 10: False alarms reported by Tracer

trace-based similarity measure powered by the static analysis is
robust to syntactic variants. Thus, Tracer can report recurring vul-
nerabilities with high similarity scores even though two programs
have significantly different syntactic characteristics.

8
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Figure 11: Comparing the accuracy of Tracer and VUDDY.

1 unsigned sget4 (unsigned char *s) {

2 ...

3 return s[0] << 24 | s[1] << 16 | s[2] << 8 | s[3];

4 }

5
6 unsigned get4() {

7 unsigned char str[4] = { 0xff,0xff,0xff,0xff };

8 fread (str, 1, 4, ifp);

9 return sget4((unsigned char *)str);

10 }

11
12 void foveon_load_camf() {

13 unsigned wide = get4();

14 unsigned high = get4();

15 ...

16 // potential integer overflow

17 char *meta_data = (char *) malloc(wide * high * 3/2);

18 ...

19 }

Figure 12: A vulnerability found in dcraw-9.28 and

rawtherapee-5.8.

5.3 RQ2: Comparison with other approaches

This section compares the accuracy of Tracer with the state-of-
the-art tools. Figure 11 shows the performance of each analyzer.

5.3.1 Comparison within Tracer variants. First, we instantiate
Tracer with four variants with different thresholds of the sim-
ilarity score: Tracer95, Tracer90, Tracer85, and Tracer0. Each
Tracer𝑛 filters out all the alarms reported by the static analyzer
whose similarity scores are less than the threshold. For example,
Tracer95 reports all alarms whose scores are larger than 0.95 and
Tracer0 does not suppress any alarms.

The similarity-based score of Tracer effectively filters out a
large number of false positives while retaining many real bugs. The
underlying taint analysis (Tracer0) is able to detect 281 vulnera-
bilities interspersed with many alarms (2,144). However, Tracer
with a high threshold significantly suppresses a large number of
false alarms. For example, Tracer95 reports only 23 false positives
while detecting 151 vulnerabilities. If a lower threshold is chosen
such as 0.85, the number of false positives increases compared to
Tracer95 but the false positive rate is still significantly lower than
Tracer0.

5.3.2 Comparison to VUDDY. For VUDDY, we established two dif-
ferent settings in ways to collect the vulnerability database for clone
detection. VUDDYO is based on the original database provided by
the official web service that has 1,764 CVEs as signatures [21]. To
throw away the effect of the quality of the database per se, we also
tried VUDDYS that uses our own signature database. Following

1 void badVaSink(char *data, ...) {

2 va_list args;

3 va_start(args, data);

4 vfprintf(stdout, data, args);

5 va_end(args);

6 }

(a) Juliet test suite (CWE-134)

1 void lqt_dump(char * format, ...) {

2 va_list argp;

3 va_start(argp, format);

4 vfprintf(stdout, format, argp);

5 va_end(argp);

6 }

(b) libquicktime2-1.2.4

Figure 13: A code clone detected by VUDDYS

the same methodology as VUDDYO , we collected all the vulnerable
functions that are patched in the later versions.

VUDDYO reports 6 false positives out of 8 alarms. The reason
of the false alarms is due to a practical issue regarding establishing
their databases. VUDDYO collects all the modified functions in
patch commits of known CVEs as signatures. However, a single
commit may contain numerous irrelevant modifications. This leads
to spurious signatures that match non-vulnerable functions. In fact,
all of the false positives from VUDDYO turned out to be the case.

The remaining 2 true alarms of VUDDYO are found in dcraw and
rawtherapee, both being exactly the same functions as shown in Fig-
ure 12. The function foveon_load_camf reads wide and high from
an external file (line 13–14), and allocates memory after multiplica-
tion (line 17) that can cause a potential integer overflow. VUDDYO
reports that this bug is originated from the same vulnerable source
(LibRaw-demosaic-pack-GPL2, CVE-2017-6889). Interestingly, the
bug is also captured by Tracer with a high similarity score (0.92)
even though Tracer does not have the origin in the signature
database. Instead, Tracer captures that the vulnerability is simi-
lar to the one in sam2p shown in Figure 1(b). Notice that the bug
from sam2p has a totally different syntactic structure from the code
in Figure 12. This example demonstrates that Tracer effectively
generalizes known vulnerability patterns to detect unseen ones.

VUDDYS reports 9 false alarms. This shows that VUDDYS may
report false positives even if the database is carefully established.
The behavior of a function often depends on the context in which
it is used. For instance, the function in Figure 13(a) is a signature
in our database. If the argument data, which is passed to the sec-
ond argument of vfprintf, can be controlled by an attacker, this
function causes format string vulnerability. With this signature,
VUDDYS detects function lqt_dump in Figure 13(b) as a recurring
vulnerability. However, according to our manual investigation, all
the calls to lqt_dump takes only safe format arguments. Therefore
this function is not vulnerable in the context of libquicktime2.

VUDDY cannot detect most of the recurring vulnerabilities de-
tected by Tracer. This is mainly because VUDDY is based on
a syntactic matching algorithm at the function-level granularity.
However, most of the vulnerabilities detected by Tracer involve
multiple functions and have significantly different syntactic struc-
tures from signatures. Such characteristics in real-world programs
hinder VUDDY from detecting semantically recurring vulnerabili-
ties.

5.3.3 Comparison to CodeQL. In this section, we compare Tracer
to CodeQL. Because CodeQL works differently from Tracer (i.e.,
the use of signatures) and there are no standard benchmarks for
recurring vulnerabilities with labels, we believe that it is not fair
to directly compare their results. Instead, we measure how many
vulnerabilities detected by Tracer are also detected by CodeQL.

9
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Here we intend not to compare their accuracy directly but to argue
that Tracer can detect non-trivial vulnerabilities.

Our experiments show that Tracer can effectively detect re-
curring vulnerabilities that are not detected by CodeQL, which is
based on human-written bug patterns. In total, CodeQL reports
3,557 alarms from the benchmark programs. Among all the 281
vulnerabilities detect by Tracer, CodeQL can only detect 97 bugs.
This implies that it is challenging to manually strike a balance
between false positives and negatives in practice. Static analysis
designers typically introduce heuristics to filter out false positives.
Such heuristics often make the analyzer miss real bugs when com-
plicated program behavior is involved such as pointer dereferences,
indirect function calls, or loops. On the other hand, Tracer does
not use such hand-crafted heuristics but relies on the similarity
measure that effectively prioritizes recurring vulnerabilities given
signatures.

5.4 RQ3: Scalability

This section evaluates the scalability of Tracer to large programs.
We measure the whole computation time of the static analysis and
similarity checking for each benchmark. Then, we report the run-
ning time of Tracer according to the size of program in Figure 14.

The results indicate that Tracer is scalable to large programs.
On average, the static analysis takes 115.86 seconds for each pack-
age. The time spent for the similarity checking is at most 2.71
seconds which is a negligible cost compared to the overall proce-
dure. Although the analysis finishes within 20 minutes for most
of the packages, some packages take considerably more time than
the average. For example, hugin takes about 51 minutes. This is
mainly because of the imprecision of function pointer resolution
that leads to analyzing too many functions via spurious indirect
calls. Another exceptional example is gettext that takes only 37
seconds while it comprises 982K lines of code. Despite the huge
code size, the program consists of a large number of small library
functions. Thus, the modular analysis can be highly parallelized.

6 THREATS TO VALIDITY

The benchmarks and signature vulnerabilities used in our experi-
ments may not be representative. We used open source programs
written in C/C++. Thus, it may have different results for programs
in other languages or from the industry. However, we collected the
benchmarks from a wide range of categories, and signatures are
also from diverse sources of vulnerability data.

We have restricted our attention to specific types of vulnera-
bilities that can be discovered by our taint analysis. We need to
generalize Tracer to arbitrary types of vulnerabilities in future
work. However, the types of vulnerabilities used in our experi-
ments are common in practice and also targeted by other work for
vulnerability detection [18, 19, 45].

7 RELATEDWORK

Ourwork is inspired by a large body of research on recurring vulner-
ability detection. All the existing work aims at discovering recurring
vulnerabilities via code reuse [22, 27, 32, 38, 48]. These approaches
transform buggy code fragments within a certain boundary (e.g.,
functions) into various forms of vulnerability signatures such as
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Figure 14: Running time of Tracer by program size.

hashes [22, 27] or dependency graphs [38, 48]. Then they search
for similar representations of code fragments in the programs un-
der investigation. On the other hand, Tracer is designed to detect
vulnerabilities that share the semantically same root cause. We use
a sophisticated static analysis that captures vulnerable semantics
along arbitrarily long paths.

Most of the existing static analyses that take into account code
patterns highly rely on manual design [2, 3, 16]. FindBugs [3], Spot-
Bugs [1], and ErrorProne [16] specify hundreds of human-written
patterns each of which describes a specific buggy scenario. To
reduce the engineering burden, CodeQL [2] introduces a query
language to succinctly define bug patterns. However, it is still non-
trivial for ordinary developers to write desired queries for their
own purposes [33]. Instead, Tracer is based on a general static
analysis designed by experts that provides an accessible framework
for developers without static analysis expertises.

Researchers have proposed many techniques to detect code
clones ranging from syntactic ones [6, 9, 20, 23, 25, 29, 30, 40, 41, 44,
47] to semantic ones [15, 24, 26, 28, 42, 46, 49]. Since their goal is
to detect generally similar code fragments, they are not suitable to
accurately find recurring vulnerabilities even via code reuse [27, 48].
Instead, our work is designed to detect semantically similar vulner-
abilities between two programs using a static analysis combined
with a trace-based similarity measure.

Our similarity checking method can be understood as an alarm
ranking system for static analysis. There have been many alarm
ranking methods proposed to lower the user’s alarm inspection bur-
dens. Existing approaches rank alarms by their confidence [31, 39],
expected reactions from developers [17] or relevance to a specific
commit [19]. To our best knowledge, none of the existing work
ranks alarms by similarity to a specific known vulnerability.

8 CONCLUSION

We proposed Tracer, a framework for detecting recurring vul-
nerabilities. Tracer is based on a static analysis that discovers
potentially vulnerable traces in a target program. Each candidate
trace is then compared with known vulnerabilities collected from
various sources. Our empirical study shows that Tracer can accu-
rately detect semantically similar vulnerabilities from a variety of
open source programs. We anticipate that Tracer will allow devel-
opers to easily prevent recurring vulnerabilities without requiring
static analysis expertise.
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Table 3: List of new vulnerabilities detected by Tracer. Signature shows the sources of vulnerability signatures and Score

represents the similarity scores between the true alarms and the signatures.

Program Bugs Bug Type Score Signature CVE Assigned

4ti2 3 Integer Overflow 0.71-1.00 Juliet-CWE190 -
bowtie2 1 Integer Overflow 0.74 CVE-2017-9181 -
bsdutils 1 Command Injection 0.86 CVE-2016-10729 -
bsdutils 1 Integer Overflow 1 Juliet-CWE190 "
bwbasic 1 Buffer Overflow 0.44 CVE-2018-1100 -
coinor-libclp1 6 Integer Overflow 1 Juliet-CWE190 -
crafty 1 Integer Overflow 0.86 CVE-2017-1000229 -
cron 1 Command Injection 0.68 OWASP tutorial -
crrcsim 2 Integer Overflow 0.85-0.90 CVE-2017-16663 -
darktable 5 Integer Overflow 1 Juliet-CWE680 -
dcraw 3 Integer Overflow 0.93-0.94 CVE-2017-9181 "

dia 3 Integer Overflow 1 Juliet-CWE190 "
drawxtl 1 Integer Overflow 0.79 CVE-2017-9181 -
dvbstreamer 1 Buffer Overflow 1 OWASP tutorial -
elvis-tiny 3 Buffer Overflow 0.50-1.00 OWASP tutorial -
gap-guava 2 Integer Overflow 1 Juliet-CWE190 -
gnuplot 2 Format String 0.82 Juliet-CWE134 -
grass 22 Buffer Overflow 0.41-1.00 OWASP tutorial -
groff 1 Integer Overflow 1 Juliet-CWE190 -
gv 4 Buffer Overflow 1 OWASP tutorial -
htmldoc 3 Integer Overflow 0.90-0.95 CVE-2017-9181 "
hugin 9 Integer Overflow 0.87-1.00 Juliet-CWE190 -
ispell 4 Buffer Overflow 1 OWASP tutorial -
libaudio2 1 Buffer Overflow 1 OWASP tutorial -
libfreeimage3 1 Buffer Overflow 0.83 CVE-2017-6313 -
libkrb5support0 2 Integer Overflow 1 Juliet-CWE190 -
liblinear-tools 1 Buffer Overflow 0.3 CVE-2018-1100 -
liblinear-tools 2 Integer Overflow 0.93-1.00 Juliet-CWE190 -
liblrs0 1 Integer Overflow 0.91 Juliet-CWE191 -
libmjpegutils-2.1-0 2 Buffer Overflow 1 OWASP tutorial -
libmount1 1 Command Injection 0.72 CVE-2015-9059 -
libmount1 1 Integer Overflow 1 Juliet-CWE190 -
libpano13-3 1 Format String 0.59 mp3rename-0.6 [18] "
libpano13-3 3 Integer Overflow 0.87 CVE-2017-16663 -
libplib1 15 Integer Overflow 0.76-0.93 shntool-3.0.5 [18] "
libquicktime2 22 Integer Overflow 0.85-0.95 CVE-2017-9181 -
lp-solve 7 Integer Overflow 1 Juliet-CWE190 -
mdadm 1 Buffer Overflow 0.16 CVE-2019-14523 -
minidlna 1 Integer Overflow 0.94 Juliet-CWE190 -
nageru 1 Integer Overflow 0.87 CVE-2017-16663 -
nedit 5 Buffer Overflow 1 OWASP tutorial -
newmail 1 Format String 0.82 Juliet-CWE134 -
nickle 1 Buffer Overflow 1 OWASP tutorial -
nickle 1 Command Injection 0.67 Juliet-CWE78 -
octave-nan 11 Integer Overflow 0.87-1.00 Juliet-CWE190 -
printer-driver-foo2zjs 1 Integer Underflow 0.94 Juliet-CWE191 -
r-cran-lpsolve 7 Integer Overflow 1 Juliet-CWE190 -

A COMPLETE LIST OF VULNERABILITIES

Table 3 and Table 4 show all bugs that are found by Tracer.
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Table 4: List of new vulnerabilities detected by Tracer.

Program Bugs Bug Type Score Signature CVE Assigned

rawtherapee 5 Integer Overflow 0.86-1.00 Juliet-CWE680 -
rlwrap 1 Command Injection 0.82 Juliet-CWE78 -
rtcw 1 Buffer Overflow 0.4 CVE-2018-1100 -
sane 1 Integer Overflow 0.87 CVE-2017-9181 -
scheme48 1 Integer Overflow 0.85 CVE-2009-1570 -
seaview 1 Buffer Overflow 0.56 CVE-2018-1100 -
siril 20 Integer Overflow 0.87-1.00 Juliet-CWE680 -
siril 3 Integer Underflow 0.82 Juliet-CWE191 -
snap 2 Buffer Overflow 1 OWASP tutorial -
snap 1 Integer Overflow 1 Juliet-CWE680 -
stk 1 Integer Overflow 0.87 shntool-3.0.5 [18] -
sweed 4 Integer Overflow 1 Juliet-CWE190 -
tcliis 1 Buffer Overflow 1 OWASP tutorial -
tome 8 Format String 0.96 CVE-2015-8106 -
vacation 1 Command Injection 0.67 Juliet-CWE78 -
w3m 1 Format String 0.96 CVE-2015-8106 -
wily 7 Buffer Overflow 0.47-1.00 OWASP tutorial -
xbuffy 1 Buffer Overflow 1 OWASP tutorial -
xfig 2 Buffer Overflow 1 OWASP tutorial -
xsane 35 Integer Overflow 0.87-1.00 Juliet-CWE190 -
xwpe 1 Buffer Overflow 1 OWASP tutorial -
xwpe 1 Command Injection 0.87 Juliet-CWE78 -
xwpe 3 Integer Overflow 0.87-0.89 Juliet-CWE190 -
zangband 1 Buffer Overflow 0.77 CVE-2017-6313 -
zangband 7 Format String 0.97 CVE-2015-8106 -
zangband 1 Integer Overflow 0.93 CVE-2017-9181 -
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