Knowledge graph oriented Open dialogue generation

2022.06.17.

20180109 Subin Kim, 20190564 Jinhyuk Jang 20180115 Sihyeon Kim, 20225375 Duri Lee

0. Summary

- Memory networks contain the inputs linearly in memory while encoding and decoding
- \rightarrow Cannot generate new topic
- Conceptflow: Creates conversation on new topics by using knowledge graph.
- Our work
 - Replication of Conceptflow \rightarrow thorough understanding of Conceptflow
 - Generation of dialogues and graph
 - Limitation of model and resolution
 - Computer resource(GPU memory etc.)
 - Larger training data

- What if **robots** can **chit-chat** with humans like friends?
- Open domain dialogue : satisfy humans need for communication, affection, and social belonging

ΚΔΙΣΊ

- Google Meena
- Facebook Blenderbot

- To create a Human-like model for an open domain dialogue
 - It should Catch the **subject** of the conversation
 - And transfer to **related subjects** naturally
- memory network to remember previous subjects
 - Advantages : Effectively extract keywords
 - Limitation : Cannot generate beyond topic

Q. What if we can search new topics based on graph structures?

- Easily grasp connection between topics
- Able to hop between diverse topics

• Concept Flow as the resolution of Mem net limitation

Obj. How can we generate open domain dialogues that can reflect the relationship between topics & easily cross over various topics?

- Purpose of the project
- Study the specific example of Dialogue generation model
- Create graphs that are generated while dialogue generation
- Understand the limitations of the model

2. Related Works

Previous studies focus on task-targeted dialog systems based on domain-specific knowledge

CopyNet (ACL 2016)

- Integrate the seq2seq model in the decoder with a new copying mechanism
- Choose subsequences from input and incorporate them at appropriate positions in the response

2. Related Works

CCM(IJCAI 2018)

- Exploit knowledge graph and use Attention to select knowledge semantics
- 1) Static graph attention: generates representation using structured semantic information.
- 2) Dynamic graph attention: reads knowledge graph and uses semantic information to generate response.

Shortcomings. Mainly focus on the grounded concepts
-> Do not explicitly model the conversational structures
using multi-hop concepts

κλις

3. Solution

Q. What if we can search **new topics** based on graph structures?

4. Dataset_ConceptNet

ConceptNet

- Open source commonsense knowledge graph
- Contains 120,850 triples, 21,471 concepts and 44 relation types
- Used as the referred knowledge graph in constructing graphs used for tracking concepts

Reddit single-rounded dialogue

 All experiments use the multi-hop extended conversation dataset based on a single-round dialogs from Reddit embedded through ConceptNet

3. Solution

Q. What if we can search new topics based on graph structures?

- Embed diverse topics on knowledge graph
- Grasp keywords through encoder-decoder models and find the keyword in the graph

κδις

3. Solution

Q. What if we can search new topics based on graph structures?

- Embed diverse topics on knowledge graph
- Grasp keywords through NLP models and find the keyword in the graph
- Find similar keywords in the knowledge graph by finding nearest neighbors

3. Solution _ Related works

GraftNet(EMNLP 2018)

- Extracts answers from a subgraph with text and knowledge base entities and relations
- Shows strong effectiveness on embedding.
- Used for central graph flow encoding in ConceptFlow

3. Solution _ Output example

• These are the subgraphs of the generated graph by extracting one-hop and two-hop related concepts (actual output of the model)

ΚΔΙΣ

3. Solution

Q. What if we can search new topics based on graph structures?

- Embed diverse topics on knowledge graph
- Grasp keywords through NLP models and find the keyword in the graph
- Find similar keywords in the knowledge graph by finding nearest neighbors
- Embed new keywords into the next dialogue that is generated

4. Dataset_ConceptNet

ConceptNet

- Open source commonsense knowledge graph
- Contains 120,850 triples, 21,471 concepts and 44 relation types
- Used as the referred knowledge graph in constructing graphs used for tracking concepts

Reddit single-rounded dialogue

 All experiments use the multi-hop extended conversation dataset based on a single-round dialogs from Reddit embedded through ConceptNet

4. Dataset_ConceptNet

Post: this is my favorite **story** arc . can't **wait** to see how he does in the

tourney ! the show is my guarantee smile for the week . **Response:** yea it's hard not to have a smile on your face the entire episode

4. Dataset_conversation dataset

Dataset scale

3,384,185	train	Reduced x33	100,000 train data
data			10,000 test data
10,000 test data			

Data example

Post	["fyi", "it", "₩'s", "so", "the", "car", "is", "n₩'t", "damaged",]
Response	["really", "?", "so", "like", "they", "trust", "the", "person",]
One hop	List of one hop elements by post
Two hop	List of two hop elements by post

5. Evaluation

Concept-PPL

the methods to calculate Perplexity

- Combining the distribution of both words and concepts together
- Words perplexity: Evaluate the model at the content level (whether the content is grammatical and relevant in topic)
- Entity score : calculate the number of entities per response to measure the model's ability to select the concepts from the commonsense knowledge base in dialogue generation

6. Result _generated dialogue

- : Repeated words
- : used in both question and answer.
- : Related with the concepts in question, but not in question.

```
A: will you be requiring a shake today , sir ?
B: i'm not a sir .
```

- A: black bullet has a similar concept that in my opinion is done a lot better .
- **B**: i'm not sure if it 's a black bullet .
- A: she can warg cats ?
- B: the cat cat cat

A: does anyone know what happened to the driver ? his head did not look ok at the end . B: the driver is the only game in the game

72% of the responses started with "I'm"43% of the responses started with "I'm not sure"

6. Result _generated dialogue

Positive

- Use similar words in input (ex. Racist, asshole, sir, glasses ..)
- Try to use concepts relates with input that is not already given in input (ex. Opponent -> rival, racism -> sexist)

Limitations

- Same phrases appear repeatedly (ex. I don't think, I'm not, ...)
- Repeatedly used words within one sentence (ex. Fan of the fan, same thing I'm in the same)
- Not yet grammatically correct

6. Result_ human evaluation

- 10 people evaluate 6 responses from epoch 1~8 (score 1, 2, 3, 4, 5)
 - 1) Does the response **appropriate Grammarly?**
 - 2) Does the response appropriate in Topic?
 - 3) Does the response include any information?

Epoch	Grammar	Topic	Info.
1	2	2	1
2	2.5	2	2
3	2.5	3	2
4	2.5	1.5	1
5	2.5	1.5	2.5
6	2.5	1	3.5
7	2.5	0.5	3.5
8	2	0.5	4

5. Conclusion

- Used **ConceptFlow** for dialogue generation.
- **Output**: generated dialogue was not smooth and had similar structures repeating same words.
- Limitation: Small training data due to resource
 - → hard to learn selecting words or generating response sentences
- Analyzed how the model **generates the sentences** and **chooses new topics**

