
Spatio-Temporal Attention based Conditional
Traffic Flow Prediction in Urban Areas

No Author Given

No Institute Given

Abstract. Conditional traffic flow prediction is an important step for
urban planners to deploy new change to the land or building use, which
may cause a significant impact on traffic congestion by the drastic in-
crease of travel demands. However, it is not trivial to model a compre-
hensive method which can consider multi-modal conditions to predict
traffic flow because of their different spatial and temporal complexity. In
this paper, we propose a novel conditional traffic flow prediction model
STGCAN which can effectively utilize the syntactic and semantic roads
information with given daily conditions such as subway ridership demand
and weekday-holiday conditions. The experiment results show that our
model outperforms the baseline models, and the semantic road features
(e.g. POIs) help to improve the performance of our model. Our work
provides insight to construct a model that integrates the spatial and
temporal information of the data, and we expect our research to be of
great help in research of urban planning and smart city fields.

Keywords: spatio-temporal attention · traffic flow prediction · graph
convolution network

1 Introduction

Conditional traffic flow prediction[1,2] is an important step for urban planners
before deploying new change to the land or building use, which may cause a sig-
nificant impact on traffic congestion by the drastic increase of travel demands.
For example, when SBC Park in San Francisco was planned for construction, ex-
tensive transportation management considerations had been taken to carry more
than 40,000 visitors while alleviating the traffic congestion[3]. For predicting ur-
ban traffic flow, previous studies show that one of key factors to consider is road
traffic which is affected by various conditions such as road networks [16,17,18],
semantics of a region [6,7], daily travel demand [8,9], or weekday-holidays. How-
ever, it is not trivial to model a comprehensive method which can consider all
of these multi-modal conditions mentioned above to predict traffic flow because
of their different spatial and temporal complexity [4].

With the advent of sophisticated spatio-temporal neural networks, there have
been a handful of approaches that leverage the ridership data to conduct condi-
tional traffic prediction. [5] proposes a spatio-temporal deep learning framework
leveraging fully convolutional neural network which can forecast the inflow and
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outflow of ridership and traffic flow using their historical data on the conditions
of holidays and weather. In this research, traffic flow prediction is conducted in
units of coarse grid cells of city, which can cause degraded accuracy when sev-
eral roads overlap in one cell. In other words, the proximity of euclidian distance
between two roads does not guarantee that their traffic pattern will be similar if
the roads are not connected as discussed in [16]. [8,9] propose models based on
conditional generative adversarial networks (GAN) with given ridership demand
estimation to predict traffic status. These models also has a similar problem to
the [5] as they use grid-cell unit traffic data. Also, these GAN models are not
stable for training [19] and are not scalable to handle multi-modal conditions.
Meanwhile, many studies suggest that the urban semantics of the road such as
land use, POI information, and the purpose of visitors in the region are corre-
lated with traffic flow and ridership demand[10,11,12,14,6]. Since the way people
exploit a region can provide more explainability for urban traffic flow prediction,
it is important to consider urban semantics of the road for more accurate traffic
flow prediction.

In this paper, we propose a novel conditional traffic prediction model, Spatio-
Temporal Graph Convolution and Attention Network (STGCAN) which can
effectively utilize syntactic and semantic roads information such as road connec-
tivity, POIs, and land use information, under given subway ridership demand
and weekday-holiday conditions. STGCAN is composed of a encoder and a de-
coder spatio-temporal blocks, where the encoder extends the given sparse subway
ridership features to be projected to road traffic flow producing an latent em-
bedding space and the decoder transforms it into traffic flow prediction of each
road. After the encoder block process the subway station unit ridership data
into road unit latent embedding, the decoder block utilizes the spatio-temporal
embedding that contains road semantics as well as other syntactic information
and apply spatial attention. Both encoder and decoder block also includes tem-
poral attention which can capture temporal relationship of the input features.
We compare our model with the baseline models such as CNN, LSTM, BiLSTM,
and temporal attention, and show that our model outperforms the others. We
summarize our contributions as follows:

– We propose STGCAN which comprises graph convolution and spatio-temporal
attention mechanisms which utilize the semantic road features which has not
been tried in the previous research.

– Our model can predict traffic flows in multi-modal conditions using sub-
way ridership data which has high practical value for application in urban
planning.

– We construct our novel dataset to experiment with our model including
traffic speed, subway ridership, POI data, and residential data. We publish
our dataset and program code to contribute to research community.
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2 Related Work

Conditional Traffic Flow Prediction Previous research on conditional traffic
flow prediction propose various approaches to capture spatio temporal features
of different types of data. [4] gives overview of spatio-temporal data including
dynamic conditions such as POIs, taxi trajectories, business location, or route
planning using machine learning. [5] propose a spatio-temporal deep learning
framework which can forecast the inflow and outflow of ridership and traffic flow
using their historical data on the conditions of holidays and weather. [6] use
kernel ridge regression to describe the non-linear non-additive relationships of
impacting factors such as points-of-interest (POIs), geo-tagged tweets, weather,
vehicle collisions. [7] use GCN and GRU models combined to consider both
static and dynamic factors such as distribution of roadside POIs and weather
for forecasting traffic states. [8,9] propose models based on conditional generative
adversarial networks with given ridership demand estimation to predict traffic
status. Such models predictions are based on traffic dependencies on diverse
conditions including spatial-temporal features. However, they lack the analysis
of urban semantics of adjacent locations of road.

Traffic Flow and Ridership with Urban Semantics There have been di-
verse approaches to find the relationship between urban semantics and traffic
flow. [10] analyzes the correlation between (POI) and the real-time traffic in
Beijing, China and the main congestion areas using cluster analysis and linear
regression. [11] found that gentrification has a positive correlation with colli-
sion patterns in Los Angles County using multivariate regression method. [12]
proposes that population and area of the metropolitan area, the vitality of the
regional economy (median housing costs) has positive correlation with ridership
demands through linear regression. [14] uses taxi trajectory from GPS data and
subway demands in Wuxi, China by constructing two directed graphs each to
evaluate the statistical results before and after the opening of a new subway.
However, these researches could not overcome the limitation of linear regression,
and lack the insight of explicit traffic congestion prediction that can be used
real-time.

Spatio-Temporal Traffic Prediction Models The survey[15] gives overall
perspective of spatio-temporal traffic prediction using graph neural networks
such as graph convolution or graph attention networks. One of the earlier trials
to capture spatio-temporal relations in traffic prediction is DCRNN [16] which
captures the spatial dependency using bidirectional random walks on the graph,
and the temporal dependency using the encoder-decoder architecture with sched-
uled sampling. STGCN[17] utilizes stacks of spatial and temporal convolutional
graph network to capture spatio-temporal features of the traffic data. GMAN[18]
uses STAttention block which is multi-attention blocks to run spatial, tempo-
ral embedding with gated fusion and puts STAttention block in encoders and
decoders which is following transform mechanism.
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3 Preliminary Definitions

3.1 Notations and Definitions

We list the preliminaries to be used throughout the paper in Table 1.

Table 1: Preliminary Notations and Definitions
Notations Descriptions

Nt ∈ N Number of time slots within a day.

Nc ∈ N Number of subway stations.

Ns ∈ N Number of target estimation roads.

Nf ∈ N Number of semantic road features.

U = {u1, ..., uNc} A set of subway stations.

V = {v1, ..., vNs} A set of roads.

Gc = (U, V,Ec) Bipartite subway-road network.

G
(u)
s = (V,E

(u)
s ) Undirected road network of passengers.

G
(d)
s = (V,E

(d)
s ) Directed road network of vehicles.

X τ ∈ RNs×Nt Traffic speed on day τ at each road.

Dτ ∈ RNc×Nt×2 Ridership (on/off) on day τ at each subway station.

Mτ ∈ RNs×Nf Semantic features of each road on day τ .

P τ ∈ {0, 1}8 Weekday and holiday (7+1) features on day τ .

Definition 1 (Subway-Road Network). We denote a bipartite subway-road
network as Gc = (U, V,Ec), where U = {u1, ..., uNc} is a set of subway stations,
V = {v1, ..., vNs

} is a set of roads, and edges Ec = {(ui, vj)}, where ui ∈ U
and vj ∈ V . In general, subway stations in Seoul are located at intersections to
let passengers to easily move to their destination through an entrance and to
allow people to cross the road by using an underpass. In Fig. 1, a subway station
ui is connected to eight roads including vj as the station is located on the the
crossroad.

Definition 2 (Road Network). We denote two different road networks by

the way to establish road connectivity: an undirected road network, G
(u)
s , in

terms of passengers, and a directed road network, G
(d)
s , in terms of vehicles.

First, we denote an undirected road network as G
(u)
s = (V,E

(u)
s ), where V is a

set of roads and E
(u)
s = {(vi, vj)} is a set of connectivity between the roads. We

assume that passengers can cross the road and move to their intended destination
through crosswalks or underpasses. Thus, in Fig. 1, vi is connected to each road
{vj , vk, vl, vm, vn} by the crossroad regardless of the traffic directions. Second,

we denote a directed road network as G
(d)
s = (V,E

(d)
s ), where V = {v1, ..., vNs

}
is a set of roads and E

(d)
s = {(vi → vj)} is a set of directed connectivity between
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(a) Subway-road connectivity (b) Road connectivity

Fig. 1: Subway and road connectivity

the roads. Since roads in our dataset have starting and ending points at the
crossroads in many cases, we consider different scenarios where two roads can
be connected. In Fig. 1, a road vi is connected to vj , vk, vl since the vehicle at
vi can drive to as they are on the same traffic direction. However, we do not
consider the connections (vi → vm) and (vi → vn) are established since their
traffic direction is opposite or they are in a rare U-turn case.

Definition 3 (Traffic Speed). Among the different metrics to measure the
traffic flow, we choose traffic speed as it best indicates the traffic congestion
empirically. The traffic speed data on each road vi ∈ V is measured for Nt
time slots on a day. We denote the traffic speed value on the day τ as X τ =
{Xτ

1 , ..., X
τ
Ns
} ∈ RNs×Nt , where Xτ

s ∈ RNt is a traffic speed matrix at road s
with Nt time slots on the day τ .

Definition 4 (Subway Ridership). The ridership of each subway station
uj ∈ U is measured for Nt time slots on a day. We denote the subway ridership as
Dτ = {Dτ

1 , ..., D
τ
Nc
} ∈ RNc×Nt×2, where Dτ

c ∈ RNt×2 is a number of passengers
at station c with Nt time slots who ride on/off on the day τ .

Definition 5 (Semantic Road Features). In order to give semantic features
of road, we extract Nf types of daily road features from POI, residential area,
and road property which are described in the Dataset section. We denote the
semantic road features on the day τ as Mτ = {Mτ

1 , ...,M
τ
Nf
} ∈ RNs×Nf .

Definition 6 (Weekend and Holiday Features). Since the traffic patterns
are highly correlated to the holidays or the days of the week as shown in Fig.2,
we denote weekend and holiday features as P τ ∈ {0, 1}8, where the first seven
features are the one-hot encoding of the day of the week and the last one feature
is indication of the national holiday.
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(a) Sample traffic speed (b) Sample subway ridership

Fig. 2: Hourly pattern of sample traffic speed and ridership demand on weekday
and weekend/holiday.

3.2 Problem Definition

Given the condition on a day τ which are the subway ridership D̂τ , the semantic
road feature M̂τ , and the weekday-holiday information P̂ τ , we aim to estimate
the traffic speed of roads on that day, that is X̂ τ .

4 Methodology

Fig. 3: The overview of our proposed STGCAN model.

The overview of our proposed STGCAN model architecture is described in
Fig.3. Our model consists of the encoder spatio-temporal (ST) block and the
decoder ST block, with two dense layers where one at the front which expands
the last feature dimension from 2 to dh, and the other one at the last which
shrinks it from dh to 1 and produce the predicted traffic speed value, X̂ . In the
following subsections, we first explain the spatial graph convolution network (S-
GCN) which is used in encoder ST-block. Next, we explain how to make encoder
STE and decoder STE which are fed to spatial and temporal attention in encoder
and decoder ST-blocks. Then, we explain how to apply spatial attention (S-Attn)
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and temporal attention (T-Attn). Finally, we explain how to combine S-GCN,
S-Attn, S-Attn to construct the encoder and the decoder ST-blocks.

4.1 Spatio Graph Convolution Network

In order to calculate the impact on nearby roads through passengers using sub-
ways, we propose spatial graph convolution network (S-GCN) in the encoder
ST-block. Basically, graph convolution network (GCN)[23] is a method of con-
volution using the embedding of the connected nodes to construct the target
node embedding. We slightly modify standard GCN to fit our subway-road net-
work which transforms the input of Nc subway ridership into Ns of road unit
features. The key idea of our S-GCN is to train the weighted adjacency matrix
of the k-hop neighborhood roads to each subway station for the graph convolu-
tion. Before leveraging S-GCN, we first extract each adjacency matrix from Gc
and G

(u)
s , respectively. We construct a bipartite adjacency matrix from Gc as

Ac ∈ {0, 1}Ns×Nc , where Ac(i,j) = 1, if (vi, uj) ∈ Ec, and Ac(i,j) = 0, otherwise.

Also, we construct an adjacency matrix from G
(u)
s as As ∈ {0, 1}Ns×Ns , where

As(i,j) = 1, if (vi, vj) ∈ E(u)
s , and As(i,j) = 0, otherwise. Then, we establish a

kc-hop connectivity adjacency matrix Asc as following equation.

Asc =

(
kc∨
i=0

AisAc

)
∈ {0, 1}Ns×Nc (1)

We repeat Asc for Nt times and stack to construct Asct = [Asc]
t=Nt
t=1 ∈

RNt×Ns×Nc . Then, we conduct element-wise matrix multiplication (◦) of a weight
matrix WA with ReLU activation:

A = ReLU(Asct ◦WA) ∈ RNt×Ns×Nc (2)

where WA ∈ RNt×Ns×Nc is a learnable parameter. Using the weighted con-

nectivity of the roads of each time slot At, we produce output H
(l)
t of this hidden

layer as

H
(l)
t = ReLU(AtH

(l−1)
t Wg,t + bg,t) (3)

whereH
(l−1)
t ∈ RNc×dh ,H

(l)
t ∈ RNs×dh , WH ∈ RNt×dh×dh , bH ∈ RNt×Ns×dh ,

and WH , bH are learnable parameters. Note that the dimension of input and
output of the S-GCN has been changed from H(l−1) ∈ RNc×Nt×dh to H(l) ∈
RNs×Nt×dh .

4.2 Spatio-Temporal Embedding for Attention

We leverage spatio-temporal embedding module to feed attention modules in
each encoder and decoder ST-block. In general, all the size of the embeddings
to be used throughout our STGCAN is unified to dh for simplicity. Our spatio-
temporal embedding simply consists of half of spatio embedding and the other
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half of temporal embedding. In the case of temporal embedding, one half includes
time slot feature while the other half contains the weekday-holiday features. In
the case of spatio embedding, syntatic and semantic features takes each half.
We recommend to set dh to be dividable by 4, as each spatio and temporal
embedding consists of two different types of features.

Encoder Temporal Embedding To leverage the temporal attention in the
encoder ST-Block, we need Nc × Nt embeddings corresponding to combina-
tions of each station and time step of the ridership data. To enable this, we
first create one-hot encoding of the size RNc corresponding to each station, and
process through two dense layers to generate station embedding, eC ∈ Rdh/2.
We also create one-hot encoding of size RNt containing information for each
time step, and process through two dense layers to generate the time-step em-
bedding, eT ∈ Rdh/4. Finally, we process P τ ∈ {0, 1}8 through two dense lay-
ers to generate the weekday-holiday embedding, eP ∈ Rdh/4. Finally, we con-
catenate each embedding to generate an encoder temporal embedding of size
eE = {eC‖eT ‖eP } ∈ Rdh , and {eEc,t} ∈ RNc×Nt×dh totally. This embedding pro-
vides information so that temporal attention can learn characteristics of different
time steps and day-holidays information on each station.

Decoder Spatio-Temporal Embedding To utilize the spatial attention and
the temporal attention in Decoder ST-Block, we need Ns ×Nt embeddings for
combinations of each road and time step to utilize Ns×Nt× dh dimensional la-
tent space embedding. For temporal embedding, we utilize the same eT ∈ Rdh/4
and eP ∈ Rdh/4 created from the encoder temporal embedding in the previous
subsection. In case of spatio embedding, it consists of a synthetic embedding
and a semantic embedding. For syntactic embedding, we extract node2vec[26]

features from G
(d)
s to leverage a vector of Rdv corresponding to each road, where

dv is the embedding size. Subsequently, we change the feature size from dv to
dh/4 via one dense layer to create an embedding of the dimension eSy ∈ Rdh/4.
For semantic embedding, we process Mτ

s ∈ RNf which is a semantic road fea-
ture of a road s, through one dense layer to construct eSm ∈ Rdh/4 for each
road. Finally, we concatenate each embedding to generate an encoder temporal
embedding of eD = {eSy‖eSm‖eT ‖eP } ∈ Rdh , and {eDs,t} ∈ RNs×Nt×dh totally.

4.3 Spatial and Temporal Attention

The non-linear transformation function f used in this paper is defined in Eq.4,
where W and b are learnable parameters, and ReLU[27] is an activation function.

f(x) = ReLU(xW + b) (4)

Each spatial and temporal attention module receives the input H(l−1) and
produces the outputH(l). The input shape of each encoder ST-block is RNc×Nt×dh ,
and the input shape of each decoder ST-block is RNs×Nt×dh . Each attention
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module in encoder and decoder consumes the corresponding encoder or decoder
embedding as we explained before, and we denote them as evi,tj or vi ∈ V for
convenience, where V = U in encoder ST-block and V = V in decoder ST-block
and 1 ≤ j ≤ Nt. In addition, encoder ST-block utilizes {eEc,t} ∈ RNc×Nt×dh ,

while decoder ST-block utilizes {eDs,t} ∈ RNs×Nt×dh . Note that spatial attention
is only used in the decoder block as described in Fig.3.

Spatio Attention Since traffic flow in road network affects each connected
road by different ways, we apply an attention mechanism is to capture these
features. The main idea is to infer the road traffic feature from different features
of the road using their connectivity at each time step.

h
(l)
vi,tj =

∑
vk∈V

αvi,vk · h
(l−1)
v,tj (5)

As shown in the formula above, vi calculates the attention for vk as αvi,vk ,
where

∑
vk∈V αvi,vk = 1. This value is calculated by considering only the corre-

lation between roads regardless of tj .

svi,v =
〈fs,1(h

(l−1)
vi,tj ‖evi,tj ), fs,2(h

(l−1)
v,tj ‖ev,tj )〉

√
2dh

(6)

f
(k)
s,1 , f

(k)
s,2 and f

(k)
s,3 denotes three different linear layers as mentioned above.

Then, we normalize svi,v with softmax:

αvi,v =
exp(svi,v)∑

vi∈V exp(svi,v)
(7)

In addition, multi-headed can be considered to stabilize learning. At this
time, the attention of K heads is calculated as follows:

s(k)vi,v =
〈f (k)s,1 (h

(l−1)
vi,tj ‖evi,tj ), f

(k)
s,2 (h

(l−1)
v,tj ‖ev,tj )〉

√
2dh

(8)

α(k)
vi,v =

exp(s
(k)
vi,v)∑

vi∈V exp(s
(k)
vi,v)

(9)

h
(l)
vi,tj = ‖Kk=1{

∑
v∈V

α(k)
vi,v · f

(k)
s,3 (h

(l−1)
v,tj )} (10)

Finally, by adding Add and Normalization layer, we reduce the dimension
from dh ×K to dh for the output used as input in the next layer.

Temporal Attention Traffic conventions on roads affect different ways over
time. To model these features, we utilize temporal attention. The key idea is to
learn different features for different time zones on each road for the time axis.

h
(l)
vi,tj =

∑
r=1...Nt

βtj ,tr · h
(l−1)
vi,tj (11)
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As shown in the formula above, basically vi calculates the attention for vk as
βvi,vk , which is

∑
vk∈V βvi,vk = 1. Regardless of this road, the value is calculated

by considering the correlation between different time steps. In order to apply
multi-head similar to the above spatial attention, the following formula is used.

u
(k)
tj ,t =

〈f (k)t,1 (h
(l−1)
vi,tj ‖evi,tj ), f

(k)
t,2 (h

(l−1)
vi,t ‖evi,t)〉√

2dh
(12)

β
(k)
tj ,t =

exp(u
(k)
tj ,t)∑

r=1...Nt
exp(u

(k)
tj ,tr )

(13)

ht
(l)
vi,tj = ‖Kk=1{

∑
r=1...Nt

β
(k)
tj ,tr · f

(k)
tr,3

(h
(l−1)
v,t )} (14)

The output dimension of temporal attention is also ultimately reduced by
adding Add and Normalization layer, from dh × K to dh for the output to be
used in the next module.

4.4 Encoder/Decoder ST-Block

Our STGCAN consists of two main ST-blocks, that are encoder ST-block and
decoder ST-block. First, the encoder ST-block consists of a T-Attn and a S-GCN
module. When T-Attn module in encoder block captures the temporal feature
using an attention mechanism, it utilizes the encoder temporal embedding (TE)
which contains the features from the P̂ . Then, S-GCN module converts station-
wise data into road-wise data while capturing the relationship between the sub-

way and road, using Gc and G
(u)
s , which extends the spatial-dimension of the

input from Nc to Ns, and parse to latent space. Second, the decoder ST-block
consists of two T-Attn blocks at the front and the back, and one S-Attn block
between them in a stacked structure. Each temporal and spatial attention net-
work in the decoder ST-block makes use of decoder spatio-temporal embedding

(STE) which contains the features from G
(d)
s , M̂, and P̂ .

4.5 Optimization

For training of our model, we set the objective loss function for back-propagation
as mean absolute error (MAE) between predicted value and ground truths.

L(Θ) =
1

NsNt

∑Ns

s=1

∑Nt

t=1
|Xs,t − X̂s,t| (15)

5 Evaluation

5.1 Dataset

To train STGCAN model, there are four different types of dataset required:
traffic speed, subway ridership, road semantic features, and national holiday.
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(a) Gangnam
(Ns = 212, Nc = 15)

(b) Sungsu
(Ns = 106, Nc = 6)

(c) POI
extraction

Fig. 4: Data processing of each region and semantic road feature.

First, for the traffic speed data, we construct a daily and hourly traffic speed and
a road network dataset of Seoul, which is publicly accessible at TOPIS1(Seoul
Transport Operation and Information Service). The traffic speed in this dataset
is measured by the average speed of taxis passing each road at each time step.
Second, the subway ridership data and station location (latitude, longitude)
of subway line 1 to 8 in Seoul is provided in Open Data Plaza2 for each day
and hour. Third, to extract daily road semantic feature which slightly changes
everyday as business open and close, we utilize the density of POI types in
each road and residential area information. The POI dataset is provided in 3

which contains the location, business types, and the opening and closing date.
We explain more detail in Data Processing section how we create M from the
list of road semantic features above. Finally, for the national holiday, we utilize
official holiday in Korea for each year. All types of our dataset is extensively
constructed from Jan 1st, 2015 to Dec 31st, 2019.

5.2 Data Processing

For target dataset, we select Gangnam and Seongsu-dong as their urban environ-
ments are dynamically changing, and their road network is simpler to construct
than other areas. Using the geographical information system (GIS) tools, we filter
out the road network, and subway stations within those regions as in Fig.4a,4b.
To extract semantic road features, we extract POI data and residential area data

1 https://topis.seoul.go.kr/
2 http://data.seoul.go.kr/dataList/OA-12921/F/1/datasetView.do
3 https://www.localdata.go.kr/
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within 50 meters from each road on the right side considering the right-hand traf-
fic, by moving the line of the road to the right and create a new polygon to query
the features as in Fig.4c. For POI data, we use 10 most frequent categories: mail
order business, general restaurant, general health functional food sales business,
convenient restaurant, medical device sales (rental) business, clinic, beauty busi-
ness, publishing company, distribution and sales business, and convenient stores.
Each POI feature of a road is processed by counting the type of POIs and divide
by the length of the road. For residential area feature, we extract the indication
of existence of the apartment information in Seoul as they affect the nearby
traffic flow stronger than low-rise residential area. After extract all the road se-
mantic features, we concatenate 10 POI features, 1 lane size feature, 1 residential
area indicator, 1 road length feature, 1 maximum speed limit feature to create
Nf = 14 features on each day. Note that this semantic features slightly changes
everyday as old business close and new business open, other features are static
which does not change easily.

5.3 Experimental Settings

Metrics We compare using Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage
Error (MAPE), which are the most commonly used performance comparisons.

Hyperparameters In our data, we use Ns = 212/102 (Gangnam/Sungsu) for
the number of roads, Nt = 16 (8h to 23h) for the number of time slots in a day in
hourly unit, dh = 64 for the dimension of hidden features, dv = 64 for node2vec
dimension, K = 2 for the number of attention heads, and k = 3 for the number
of hops in S-GCN.

Baselines We compare models such as Historical Average (HA) model using
historical means of each road, Historical Average (HA-P) model reflecting week-
end and holiday information of each road, Fully Connected Nueral network with
CNN (FCN-CNN), FCN-LSTM, FCN-BiLSTM, FCN with temporal attention
(FCN-Attn), and our STGCAN with/withoutM features in spatio-temporal em-
bedding. The FCN module takes the role to change spatial dimension from Nc
to Ns. The FCN-based models concatenates the input with the spatio-temporal
embedding without M feature to give minimum embedding for each road and
time step. In STGCAN withoutM feature, we give spatio-temporal embedding
as eD = {eSy‖eT ‖eP } ∈ Rdh , where we process node2vec feature on dense layer
of dv → dh/2 to produce eSy ∈ Rdh/2.

5.4 Result

Table 2 shows the overall experimental results. First of all, we set HA and HA-
P as baseline approaches that predict traffic by the historical information. We
see that traffic prediction highly depends on weekday-holiday information P.
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Table 2: Result comparison of STGCAN with other baseline models
Gangnam Sungsu

MSE RMSE MAE MAPE MSE RMSE MAE MAPE

HA 18.65 4.32 3.22 17.68 17.64 4.20 3.02 16.39

HA-P 19.71 4.44 2.92 15.32 18.01 4.24 2.79 14.81

FCN-CNN 10.54 3.25 2.32 12.43 10.29 3.21 2.26 11.83

FCN-LSTM 10.71 3.27 2.34 12.37 13.2 3.63 2.46 13.43

FCN-BiLSTM 10.20 3.19 2.27 12.16 9.04 3.01 2.06 11.08

FCN-Attn 10.19 3.19 2.22 11.85 9.81 3.13 2.02 10.94

STGCAN 9.75 3.12 2.16 11.31 7.68 2.77 1.90 10.20

STGCAN-M 9.29 3.05 2.08 11.34 6.36 2.52 1.74 9.44

While the deep learning based models also utilize the P information, they show
better results than HA-P since they use more spatial and temporal features from
the input. Note that FCN-Attn performs better than FCN-CNN, FCN-LSTM,
and FCN-BiLSTM. This implies that using different attention on different time
step is more effective method than using sequential information for traffic flow
prediction.

Finally, STGCAN and STGCAN-M outperform the other deep learning based
models as they utilize spatial information derived from road network and seman-
tic information. The performance of the STGCAN-M model which takes road
semantic M into consideration is better than STGCAN. This implies that in-
tegrating semantic road information also improves the accuracy of traffic pref-
erence. When we compare STGCAN and STGCAN-M in different regions, the
gap of performance improvement is greater in Seongsu-dong than in Gangnam.
Seongsu-dong is one of the fast commercializing regions in Seoul [22]. This re-
sults in more POI information in Seongsu-dong and the performance gap of the
STGCAN when using M feature in Sungsu-dong is more effective than Gang-
nam.

Figure 5 shows that the RMSE plot of each model at different time steps
on weekday-holiday condition in Gangnam and Sungsu-dong. In general, every
model shows better performance in weekend/holiday than in weekday and have
less deviation. On weekday, we see that the results in Sungsu is less erroneous
than results in Gangnam at the rush hour (8h-11h, 17h-19h). This is because
there exists less congestion during the rush hour in Sungsu-dong, which makes
it easier to predict the traffic flow since Seongsu-dong has less office buildings
than Gangnam. On the other hand, on the weekend, the results of STGCAN in
Sungsu-dong are much better than other models in Gangnam. This is because
the semantic features have more information on the Sungsu-dong and they help
better prediction especially on the weekend when travelers visits the region a
lot.
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(a) RMSE (Gangnam) - Weekday (b) RMSE (Gangnam) - Weekend

(c) RMSE (Sungsu) - Weekday (d) RMSE (Sungsu) - Weekend

Fig. 5: RMSE of each region and time step of weekday and weekend.

6 Discussion

Experiment results show that our model performs well regardless of a region.
There still exist some limitations in the proposed model. First of all, we find that
a standard way to apply graph convolution using column normalized adjacency
matrix through several layers instead of k-hop adjacency matrix as our S-GCN
is less effectively trained. This could be because the standard GCN model do
not train the weights of various edges as STGCAN does, or the input adjacency
matrix has insufficient information in terms of strength of connectivity.

During the training of the STGCAN model, we have difficulty in finding the
condition where the model converges to learn. Unlike the other baseline neural
network models that show better performance by setting the early stopping with
validation dataset, our attention-based STGCAN model seems to train more
deep features over a longer period of time. Empirically, we find that the model
shows good performance when the training epochs is performed about 3,000
times with learning rate of 0.002 on the Adam optimizer[28]. However, we need
more extensive research to find best conditions that our model can converge fast
and shows the most optimal performance.

For the future research, using extra social features such as social network
data real-time transportation that shows more explicit spatio-temporal urban
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semantics would expand our research. Testing and generalizing our model to
show valid performance in regions other than Seongsu-dong and Gangnam would
also contribute to our work.

7 Conclusion

In this work, we propose a STGCAN model that learns the spatial-temporary fea-
ture to perform conditional traffic preference. This model performs conditional
traffic flow prediction using diverse methods from subway ridership to encoder
and decoder. Each encoder and decoder performs dynamic graph convolution
and spatial, temporal attention to train syntactic, semantic features of spatial
road networks. Our model outperforms compared to the historical average and
other baseline neural network models such as CNN, LSTM, BiLSTM, and tem-
poral attention. Our work provides insight to construct a model that performs
conditional traffic with a combination of spatial and temporal information, and
we expect our research to be of great help in research of urban planning and
smart city fields.
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