
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Tracer: Signature-based Static Analysis for Detecting Recurring
Vulnerabilities
Anonymous Author(s)

ABSTRACT

Similar software vulnerabilities recur because developers reuse
existing vulnerable code, or make similar mistakes when imple-
menting the same logic. Recently, various analysis techniques have
been proposed to find syntactically recurring vulnerabilities via
code reuse. However, limited attention has been devoted to seman-
tically recurring ones that share the same vulnerable behavior in
different code structures. In this paper, we present a general analysis
framework, called Tracer, for detecting such recurring vulnera-
bilities. Tracer is based on a taint analysis that can detect various
types of vulnerabilities. For a given set of known vulnerabilities, the
taint analysis extracts vulnerable traces and establishes a signature
database of them.When a new unseen program is analyzed, Tracer
compares all potentially vulnerable traces reported by the analysis
with the known vulnerability signatures. Then, Tracer reports a
list of potential vulnerabilities ranked by the similarity score. We
evaluate Tracer on 273 Debian packages in C/C++. Our experi-
ment results demonstrate that Tracer is able to find 281 previously
unknown vulnerabilities with 6 CVE identifiers assigned.

1 INTRODUCTION

Similar software vulnerabilities recur over time even across pro-
grams. One of the well-known reasons is the prevalence of code
reuse [22, 27, 34, 35, 48] that can lead to the spread of security
vulnerabilities in the reused code. In addition to such syntactic
recurrences, semantically similar vulnerabilities frequently recur
in unrelated codebases that are independently developed. One of
the reasons is that developers often make similar mistakes when
implementing the same standard concepts such as mathematical for-
mulas, laws of physics, protocols, or language interpreters [37, 43].
Another reason is common misconceptions due to complicated
low-level semantics of programming languages such as undefined
behaviors in C [13]. They can induce developers to write incor-
rect code with similar error patterns. According to a recent report
from Google, 6 out of 24 0-day vulnerabilities in 2020 were actually
variants of previously seen ones [43].

Although researchers have developed many successful tech-
niques to detect recurring security vulnerabilities, existing ap-
proaches have limitations in several aspects. Approaches based
on code similarity [22, 27, 32, 38, 48] aim at detecting recurring
vulnerabilities via code reuse. They generate signatures of known
vulnerabilities within a pre-defined boundary (e.g., file or function)
and compare syntactic patterns in a new program with the signa-
tures. These approaches are highly precise, scalable and general as
their approaches are based on syntactic matching. However, they
are usually unable to detect variants of known vulnerabilities with
completely different syntactic structures but with the same root

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA
. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

causes. On the other hand, pattern-based static analyses [2, 3, 16]
estimate the semantics of target programs as well as consider their
syntactic patterns. This in turn enables the analyzer to detect vul-
nerabilities that have similar syntactic and semantic characteristics
of programs with known vulnerabilities. However, designing such
analyses requires static analysis expertise and incurs nontrivial
engineering burden.

To address this problem, we set out to build an effective software
immune system against recurring vulnerabilities. We identified the
following criteria to be satisfied for such a system:

• Accuracy: Does the system accurately report potential vulnera-
bilities with a low false positive rate?

• Robustness: Is the system able to find variants of vulnerabilities
that have the same root cause?

• Generality: Is the system applicable to a wide range of security
bugs?

• Scalability: Is the system applicable to large programs?
• Usability: Does the system provide easily interpretable reports?

In this paper, we present a signature-based static analysis for de-
tecting recurring vulnerabilities, Tracer, that is designed to satisfy
the above criteria. Tracer is based on a general taint analysis that
aims at a variety of security vulnerabilities such as integer over-
flow/underflow, format string, buffer overflow, command injection,
etc. The analyzer detects potentially vulnerable data flows from
untrusted inputs (so called, source) to security-sensitive functions
(so called, sink). We run the static analyzer on a codebase with
known vulnerabilities and identify the actual vulnerabilities in the
analysis results. Next, Tracer extracts traces on the data depen-
dency relations of the vulnerabilities from the source points to the
sink points. The traces are encoded as feature vectors that form the
signatures of the vulnerabilities. Once a new program is analyzed,
Tracer extracts traces of all the reported alarms in the program,
and derives their feature vectors in the same manner. Then, Tracer
compares the feature vectors of the alarms with those of the known
vulnerable traces using a typical similarity measure such as cosine
similarity. Finally, Tracer provides a list of alarms sorted by the
similarity score.

We implemented Tracer based on Facebook’s Infer analyzer [5]
and demonstrated the effectiveness on a suite of Debian packages
written in C/C++. According to our experimental results on 273
Debian packages, Tracer discovered 281 recurring vulnerabilities
that are similar to known CVEs, vulnerability examples in Juliet
test suite [4], and sample code in online tutorials for secure coding.

This paper makes the following contributions:

• We propose a general analysis framework, Tracer, for detecting
semantically recurring vulnerabilities. Tracer is applicable to a
wide range of vulnerabilities.
• We present a trace-based method for computing the similarity

of vulnerabilities. Our method is based on data dependencies of
alarms reported by a general taint analysis.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

• We evaluate the effectiveness of Tracer on 273 Debian packages.
We found 281 vulnerabilities with 6 CVE identifiers assigned.

2 OVERVIEW

2.1 Motivating Examples

We illustrate our approach with the programs with security vulner-
abilities in Figure 1. All three programs have similar issues related
to a certain kind of security vulnerability: overflowed integers can
be used as the size argument of memory allocation functions (e.g.,
malloc). Such integer overflows cause the program to allocate un-
intentionally small size of memory chunks that potentially leads to
buffer overflows.

Figure 1(a) shows the vulnerability in an image processing tool
gimp reported in 2009. The program reads a byte string from a given
file (line 10), transforms the string into an integer (line 12). Since
this value depends on the contents of the input file, the integer can
be arbitrarily large. The integer value at line 13 can also become
arbitrarily large because of the same reason. Then, the program
multiplies the integers that leads to an integer overflow (line 14).
Finally, the overflowed integer (rowbytes) is passed to function
ReadImage and used as an argument of malloc (line 21). Notice
that the size of the allocated buffer can be much smaller than what
the developer expected. Therefore, potential buffer overflows can
happen when the buffer is used to store the data of the input file
afterwards.

After 8 years, a similar vulnerability was found in another pro-
gram, sam2p depicted in Figure 1(b). sam2p is also an image pro-
cessing tool, so that it has a similar piece of code that reads a BMP
file. Because of exactly the same reason as gimp, this program is
also vulnerable. Notice that the code snippet is quite similar to
that of gimp. Conceptually, existing methods based on code clone
detection may help catch such recurring vulnerabilities given the
vulnerability in gimp as a signature. However, it is sometimes chal-
lenging in practice. Clone-based approaches typically compare two
pieces of code within a pre-defined syntactic boundary (e.g., func-
tions or blocks). This in turn hinders the vulnerability detection
when vulnerable behavior involves multiple functions as in the
examples. State-of-the-art tools [27, 48] heuristically choose a vul-
nerability signature function that contains the patches of the known
vulnerability (ReadBMP in the gimp case). However, this is still fran-
gible if the functions are large and contain considerable syntactic
differences. For example, ReadBMP in gimp consists of 382 lines
while bmp_load_image in samp2p has only 151 lines. Although the
essence of the vulnerability is the same, they have many discrepan-
cies in the other parts. For example, lines 7–8 in the two programs
are completely different, and sam2p, which is a C++ program, uses
new rather than malloc.

Moreover, recurring vulnerabilities are not always induced by
code clones. Developers often make similar mistakes when they
write programs that have typical or standard behavior both at a low
level (e.g., reading data from files or allocating heap memory blocks)
and a high-level (e.g., calculating area of square or processing an
image file). An example from libXcursor is shown in Figure 1(c).
Similar to the previous examples, the program reads data from an
input file (line 3), converts the input byte string to an integer (line 5),
and computes the multiplication of two arbitrary large integers

1 long ToL(char *pbuffer) {

2 return (puffer[0] | puffer[1] << 8 | puffer[2] << 16 | puffer[3] << 24);

3 }

4 short ToS(char *pbuffer) { return ((short)(puffer[0] | puffer[1] << 8)); }

5
6 gint32 ReadBMP(gchar *name) {

7 FILE *fd = fopen(name, "rb");

8 if (!fd) return -1;

9
10 if (fread(buffer, Bitmap_File_Head.biSize - 4, fd) != 0) // Read from a file

11 return -1;

12 Bitmap_Head.biWidth = ToL(& buffer[0x00]);

13 Bitmap_Head.biBitCnt = ToS(& buffer[0x0A]);

14 rowbytes = ((Bitmap_Head.biWidth * Bitmap_Head.biBitCnt - 1) / 32) * 4 + 4;

15 image_ID = ReadImage(rowbytes);

16 ...

17 }

18
19 gint32 ReadImage(int rowbytes) {

20 /* memory allocation with an overflowed size */

21 char *buffer = malloc(rowbytes);

22 /* uses of buffer */

23 }

(a) gimp-2.6.7 (CVE-2009-1570)

1 long ToL(char *pbuffer) {

2 return (puffer[0] | puffer[1] << 8 | puffer[2] << 16 | puffer[3] << 24);

3 }

4 short ToS(char *pbuffer) { return ((short)(puffer[0] | puffer[1] << 8)); }

5
6 bitmap_type bmp_load_image(FILE *fd) {

7 if (fread(buffer, 18, fd) || (strncmp((const char *)buffer, "BM", 2)))

8 FATALP("BMP:␣not␣a␣valid␣BMP␣file");

9
10 if (fread(buffer, Bitmap_File_Head.biSize - 4, fd) != 0) // Read from a file

11 FATALP("BMP:␣Error␣reading␣BMP␣file␣header␣#3");

12 Bitmap_Head.biWidth = ToL(&buffer[0x00]);

13 Bitmap_Head.biBitCnt = ToS(&buffer[0x0A]);

14 rowbytes = ((Bitmap_Head.biWidth * Bitmap_Head.biBitCnt - 1) / 32) * 4 + 4;

15 image.bitmap = ReadImage(rowbytes);

16 ...

17 }

18
19 unsigned char *ReadImage(int rowbytes) {

20 /* memory allocation with an overflowed size */

21 unsigned char *buffer = (unsigned char *) new char[rowbytes];

22 /* uses of buffer */

23 }

(b) sam2p-0.49.4 (CVE-2017-16663)

1 XcursorBool _XcursorReadUInt(XcursorFile *file, XcursorUInt *u) {

2 unsigned char bytes[4];

3 if ((*file->read)(file, bytes, 4) != 4) // Read from a file

4 return XcursorFalse;

5 *u = (bytes[0] | (bytes[1] << 8) | (bytes[2] << 16) | (bytes[3] << 24));

6 return XcursorTrue;

7 }

8
9 XcursorImage *_XcursorReadImage(XcursorFile *file) {

10 XcursorImage head;

11 XcursorImage *image;

12 if (!_XcursorReadUInt(file, &head.width)) return NULL;

13 if (!_XcursorReadUInt(file, &head.height)) return NULL;

14 image = XcursorImageCreate(head.width, head.height);

15 ...

16 }

17
18 XcursorImage *XcursorImageCreate(int width, int height) {

19 XcursorImage *image;

20 /* memory allocation with an overflowed size */

21 image = malloc(sizeof(XcursorImage) + width * height * sizeof(XcursorPixel));

22 /* initialize struct image */

23 return image;

24 }

(c) libXcursor-1.1.14 (CVE-2017-16612)

Figure 1: Examples code excerpted from similar vulnerabili-

ties from different programs.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Tracer: Signature-based Static Analysis for Detecting Recurring Vulnerabilities ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Signature
Database

Similarity
Checker

Program

Static
Analyzer Ranked Alarms

1. … : 0.94
2. … : 0.66
3. … : 0.32Feature

Vector
GeneratorAlarm

Traces
Feature
Vectors

Static
Analyzer

Feature
Vector

Generator

Vulnerable
Traces

Vulnerability
Signatures

Known
Vulnerabilities

New
Vulnerabilities

1. … : 0.94
2. … : 0.66
3. … : 0.32

Figure 2: System overview of Tracer

(line 21). The multiplication also leads to an integer overflow at the
same line that can cause buffer overflows afterward. Notice that the
root cause of the vulnerability is the same as the other examples.
However, libXcursor has completely different syntactic structures.
For example, libXcursor uses an indirect call to fread at line 3 while
the other programs directly call the function.

Existing approaches are not appropriate to detect such semanti-
cally recurring vulnerabilities. Clone-based approaches [27, 48] are
not effective to detect this vulnerability, given the vulnerability in
gimp or sam2p as a signature. While the essence of the vulnerability
is still the same, the different code structure of libXcursor funda-
mentally hinders the detectability of the tools. Static bug finding
tools that aim at general integer overflows may detect this vulnera-
bility but also can incur many false positives. One can also design
a specialized static analysis dedicated to each pattern. However,
it would impose a high engineering burden while producing sub-
optimal solutions. For example, the TaintedAllocationSize checker
from Github’s CodeQL [8], which is a state-of-the-art pattern-based
analyzer, does not detect the particular vulnerabilities in Figure 1.

2.2 Our Approach

Now, we introduce how Tracer can detect recurring vulnerabilities.
Our approach is shown in Figure 2. In the rest of this section, we
explain the procedure of each component of Tracer and show the
vulnerabilities in sam2p and libXcursor can be accurately detected
by Tracer given the one in gimp as a signature.

2.2.1 Taint Analysis. Tracer is based on a generic taint analysis
that can be instantiated to bug detectors for various types of security
vulnerabilities. The analysis computes potential data flows from
untrusted inputs (sources) to sensitive functions (sinks) with a
simple abstract domain for tainted values: T = {⊥𝑡 ,⊤𝑡 } where
each element denotes that the value is not tainted (⊥𝑡) and may be
tainted (⊤𝑡). For example, in Figure 1(a), the malicious data flow
from fread to malloc is detected by the analyzer.

One may elaborate the analysis with other abstract domains
along with the basic taint domain for a more accurate analysis. In
our implementation, we have a simple abstract domain I = {⊥𝑜 ,⊤o}
for estimating whether an integer value is potentially overflowed
(⊤o) or not (⊥𝑜). For example, an untrusted input value is initially
tainted (⊤t) but not overflowed (⊥𝑜). Once the value is used as
an operand of an operator that can potentially introduce integer
overflow (e.g., +, <<), the result becomes tainted (⊤t) and over-
flowed (⊤o). For the malloc case, our analyzer raises an alarm only

when the abstract value of the argument is both tainted (⊤t) and
overflowed (⊤o). By doing so, we do not report trivial false alarms
while efficiently computing malicious data flows. The details of our
implementation is described in Section 4.

2.2.2 Traces on Data Dependency Graphs. We run the taint anal-
ysis on a given set of programs whose vulnerabilities are already
known. For each known vulnerability, Tracer extracts vulnerable
traces from the source and sink points based on the static analysis
result. To filter out statements that are irrelevant to the vulner-
ability as much as possible, we derive vulnerable traces on data
dependency graphs rather than control-flow graphs. Once the taint
analysis detects potentially malicious flows in gimp and libXcursor

in Figure 1, Tracer derives data dependency graphs and extracts
the vulnerable traces from the sources to sinks as shown in Figure 3.
Such traces will be used as signatures of vulnerabilities.

The same procedure will be applied for new target programs.
Instead, Tracer extracts all possible traces from sources to sinks
of the reported alarms while unrolling each loop only once. These
traces will be compared to the signature traces.

2.2.3 Feature Representation. Next, Tracer encodes each trace as
an integer feature vector. We design a program-independent and
common feature space that can represent transferable knowledge
for vulnerabilities. Our feature vector consists of two parts: low-
level and high-level features.

Low-level features represent the frequencies of primitive oper-
ators (e.g., *, <<) and common APIs (e.g., strlen) on the trace.
Figure 3(a) shows the feature vector of the vulnerable trace in gimp.
Likewise, the feature vector for libXcursor is shown in Figure 3(b).

On the other hand, high-level features describe detailed behavior
of traces that are not noticeable using only the low-level ones. We
manually designed 5 high-level features. In general, they charac-
terize crucial behavior of programs that can affect our target vul-
nerabilities. For example, one of our features IfSmallerThanConst

checks whether a trace has a conditional statement whose condi-
tion is of the form x < c where x is a variable and c is a constant.
This pattern is common when programs prevent integer overflows.
Suppose there exists such an expression in a trace of the target
program, but not in the signature trace. Then, the target trace is
deemed to be safe and the similarity score becomes lower.

2.2.4 Similarity Checking. Once a new program is analyzed,Tracer
extracts all alarm traces and compares them against the known
vulnerability signatures. Since all the traces are encoded as vectors,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

fread

(puffer[0] | puffer[1] << 8 | puffer[2] << 16 | puffer[3] << 24)

((Bitmap_Head.biWidth * Bitmap_Head.biBitCnt - 1) / 32) * 4 + 4;

malloc

⟨fread : 1, | : 3, « : 3, * : 2, + : 1, - : 1, malloc : 1⟩
(a) gimp in Figure 1(a)

fread

(bytes[0] | (bytes[1] << 8) | (bytes[2] << 16) | (bytes[3] << 24))

sizeof(XcursorImage) + width * height * sizeof(XcursorPixel)

malloc

⟨fread : 1, | : 3, « : 3, * : 2, + : 1, - : 0, malloc : 1⟩
(b) libXcursor in Figure 1(c)

Figure 3: Vulnerable traces and their feature vectors. The

blue and red nodes represent the source and sink points,

respectively.

Algorithm 1: Tracer(Π,A, 𝑃) where Π is a set of feature
vectors of signature traces, A is a static analyzer, and 𝑃 is
the program to be analyzed.
1 Ω ← A(𝑃);
2 𝐺 ← build_dfg(𝑃);
3 𝑅 ← ∅;
4 for 𝜔 ∈ Ω do

5 T𝜔 ← extract_traces(𝐺,𝜔);
6 Π𝜔 ← {generate_feature(𝜏) | 𝜏 ∈ T𝜔 };
7 𝑠 ← max{Sim(𝜋𝜔 , 𝜋) | 𝜋𝜔 ∈ Π𝜔 , 𝜋 ∈ Π};
8 𝑅 ← 𝑅{𝜔 ↦→ 𝑠};
9 return 𝑅;

we can use any common similarity measures. In our implemen-
tation, we use cosine similarity which is a well-known similarity
measure for two vectors. For example, the cosine similarity of the
two feature vectors in Figure 3 is computed as follows:

⟨1, 3, 3, 2, 1, 1, 1⟩ · ⟨1, 3, 3, 2, 1, 0, 1⟩
| |⟨1, 3, 3, 2, 1, 1, 1⟩| | | |⟨1, 3, 3, 2, 1, 0, 1⟩| | = 0.98

Therefore, Tracer can precisely detect semantically recurring vul-
nerabilities with high similarity scores.

3 FRAMEWORK

In this section, we formalize our approach. The overall procedure
of Tracer is described in Algorithm 1. Tracer first analyzes the
target program and derives a set of alarms (line 1). Next, Tracer
computes the data dependency graph of the program (line 2). For
each alarm of the program, the algorithm extracts a set of traces

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐸 → 𝑛 | 𝑥 | 𝐸 + 𝐸 | 𝐸 − 𝐸 | source𝑙 ()
𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶 → 𝑥 := 𝐸 | assume(𝑥 < 𝑛) | sink(𝐸)

Figure 4: Language

(line 5) and encodes them as feature vectors (line 6). Finally, we
compare each generated feature vector of the alarm 𝜔 with vulner-
ability signature traces. The score of the alarm is determined as
the maximum similarity score of them (line 7). In the rest of this
section, we formalize the details of each component of Tracer.

3.1 Program

A program is represented as a control flow graph ⟨C,→⟩ where C is
the set of control points and (→) ⊆ C×C is the control-flow relation.
Each control point is associated with a command. We assume a
simple imperative language defined in Figure 41. An expression is
an integer, variable, addition operation, subtraction operation, or
call to a source function. A command is an assignment, assume,
or call to a sink function. source and sink represent functions
that read untrusted inputs (e.g., fread), and use the arguments in a
sensitive context (e.g., malloc), repectively. We assume that each
source point is associated with a unique label 𝑙 .

3.2 Generic Taint Analysis

We present a generic static analysis for taint tracking. The goal of
the analysis is to estimate potential data flows from source points
to sink points. The analysis can be instantiated to a family of taint
analyses that are applicable to common types of vulnerabilities such
as integer overflow, format string, or command injection [18, 19, 45].
We will present the detailed instantiation for our implementation
in Section 4.

Abstract domains are shown in Figure 5(a). For a given program,
our analyzer computes an abstract state (∈ S) that is a mapping
from control points to the corresponding abstract memories. An
abstract memory (∈ M) is a mapping from variables (∈ X) to their
abstract values. An abstract value consists of two parts: the abstract
domains for taint information (T) and value information (V). The
taint domain is the power set of source labels. For taint checking, we
collect all possible source points that lead to the value. The value do-
main represents general information of variables. For instance, one
may define a simple abstract domain that only represents whether
a value is overflowed, or a more sophisticated domain such as the
interval domain. Our design choice will be explained in Section 4.
Note that the value domain is not mandatory but used to improve
the precision of the analysis.

Abstract semantics is defined in Figure 5(b). The abstract se-
mantics for expressions [[𝐸]] computes the abstract value of an
expression given an abstract memory. We assume that the value do-
mainV is accompanied by an evaluation functionV : 𝐸 → M→ V
that computes the abstract value for an expression. Constant values
(𝑛) are not tainted and introduce an abstract value according toV .
For binary operations (+ and −), we join the taint information of
two operands and compute the results of the corresponding abstract
operator. For source points, the analyzer collects the labels, which
will be used for taint checking, and computes its abstract value.
1For brevity, we only consider this simple language but our implementation handles
the full features of C/C++.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Tracer: Signature-based Static Analysis for Detecting Recurring Vulnerabilities ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

(Abstract state) S = C→ M
(Abstract memory) M = X→ T × V
(Taint) T = ℘(C)

(a) Abstract domains

[[𝐸]] : M→ T × V
[[𝑛]] (𝑚) = ⟨∅,V(𝑛) (𝑚)⟩
[[𝑥]] (𝑚) = 𝑚(𝑥)

[[𝐸1 + 𝐸2]] (𝑚) = ⟨𝑇1 ∪𝑇2,V(𝐸1) (𝑚) +V V(𝐸2) (𝑚)⟩
[[𝐸1 − 𝐸2]] (𝑚) = ⟨𝑇1 ∪𝑇2,V(𝐸1) (𝑚) −V V(𝐸2) (𝑚)⟩
[[source𝑙 ()]] (𝑚) = ⟨{𝑙},V(source) (𝑚)⟩

[[𝐶]] : M→ M
[[𝑥 := 𝐸]] (𝑚) = 𝑚{𝑥 ↦→ [[𝐸]] (𝑚)}

[[assume(𝑥 < 𝑛)]] (𝑚) = 𝑚

[[sink(𝐸)]] (𝑚) = 𝑚

(b) Abstract semantics

Figure 5: Generic Taint Analysis

The abstract semantics for commands [[𝐶]] computes the abstract
memory after the execution of𝐶 given an abstract memory. Finally,
the analyzer computes the abstract semantics of a program that
is defined by the least fixed point of the following function as is
standard:

𝐹 (𝑋) = _𝑐 ∈ C.[[𝑐]] (
⊔
𝑐′→𝑐

𝑋 (𝑐 ′)) .

Tracer derives a set of alarms from the analysis results. An
alarm of the taint analysis 𝜔 = ⟨𝑐1, 𝑐2⟩ is a pair of two control
points where 𝑐1 is a source point and 𝑐2 is a sink point that uses the
untrusted data from the source 𝑐1. We assume that the analysis is
accompanied by an alarm inspection function Q : C→ M→ ℘(C).
Given a sink point 𝑐 and an abstract memory𝑚 at 𝑐 from the analysis
result, Q(𝑐) (𝑚) is a set of source points fromwhich vulnerable data-
flows start to the sink point 𝑐 . Once an analysisA(𝑃) for program 𝑃

is completed, a set of alarms Ω is derived using the alarm inspection
function.

Definition 3.1 (Alarm). Let C𝑠 is a set of all sink points of a
program. A set of alarms Ω of the program is defined as follows:

Ω = {⟨𝑐1, 𝑐2⟩ | 𝑐2 ∈ C𝑠 , 𝑐1 ∈ Q(𝑐2) (𝑚)}

where 𝑚 is the abstract memory at 𝑐2 according to the analysis
results.

3.3 Data Dependency Graph and Tainted Traces

Next, we build a data dependency graph for the input program.
Given a control-flow graph ⟨C,→⟩ of the program, the data de-
pendency graph is defined as a tuple ⟨C,;⟩. The data dependency
graph has the same set of nodes but is based on data dependency
relations rather than control-flow relations. We follow the standard
notion of data dependency:

𝑐1 ; 𝑐2 ⇐⇒ 𝑐1 →+ 𝑐2 ∧ 𝑥 is defined at 𝑐1 ∧ 𝑥 is used at 𝑐2
∧ 𝑥 is not re-defined in any points between 𝑐1 and 𝑐2 .

where 𝑥 is a program variable. Such data dependency relation can
be computed during the static analysis by bookkeeping additional
information about the definition and use points.

Once a data dependency graph is established, we extract tainted
traces of alarms. For each alarm, Tracer derives all paths from the
source point to the sink point on the data dependency graph.

Definition 3.2 (Tainted Trace). Given an alarm 𝜔 = ⟨𝑐0, 𝑐𝑛⟩, a set
of tainted traces T𝜔 ⊆ C+ is defined as follows:

T𝜔 = {⟨𝑐0, . . . , 𝑐𝑛⟩ | ∀𝑖 ∈ [0, 𝑛 − 1] . 𝑐𝑖 ; 𝑐𝑖+1}.

In the presence of loops, there can exist infinitely many traces of an
alarm. In our implementation, Tracer unrolls each loop by once.

3.4 Feature Vector and Similarity Score

Tracer transforms each tainted trace to a feature vector that en-
codes the characteristics of the trace. We define a set of features to
capture essential knowledge of vulnerable traces that is reusable
across different programs. Tracer uses numerical features 𝑓𝑖 :
C+ → N. Given a set of 𝑛 features {𝑓1, . . . , 𝑓𝑛}, Tracer derives a
feature vector of a trace 𝜏 : ⟨𝑓1 (𝜏), . . . , 𝑓𝑛 (𝜏)⟩. Then, a set of feature
vectors Π𝜔 of an alarm 𝜔 is defined as follows:

Π𝜔 = {⟨𝑓1 (𝜏), . . . , 𝑓𝑛 (𝜏)⟩ | 𝜏 ∈ T𝜔 }

Finally, Tracer compares the feature vectors of alarms in pro-
gram 𝑃 to the set of all pre-computed feature vectors of known vul-
nerabilities, ΠS . The set ΠS can be derived using the same steps de-
scribed in the previous sections except that only known true alarms
are considered. We also assume a function Sim : N𝑛 ×N𝑛 → R that
computes the similarity of two feature vectors. Using the similarity
function, the score of an alarm is defined as the maximum similarity
score between alarm traces and signature traces.

Definition 3.3 (Score of alarm). Given an alarm 𝜔 and a set of
feature vectors of signatures ΠS , the score of the alarm is defined
as follows:

max{Sim(𝜋𝜔 , 𝜋) | 𝜋𝜔 ∈ Π𝜔 , 𝜋 ∈ ΠS}

where Π𝜔 is a set of feature vectors of alarm 𝜔 .

4 INSTANTIATION

This section describes the details of our system. First, we instantiate
the generic taint analysis to detect common types of vulnerabilities.
Our implementation aims at detecting integer overflows, integer
underflows, buffer overflows, format string bugs, or command in-
jections. Then, we explain our feature design.

4.1 Abstract Domains and Semantics

We define the abstract domain V and functionV that are used in
our implementation in Figure 6. The abstract domain V constitutes
two parts: the overflow domain and the underflow domain. The
overflow domain I (resp., underflow domain I) represents whether
the value may be overflowed (⊤𝑜) (resp., underflowed) or not (⊥𝑜).
The function V : 𝐸 → M → V approximates the chances of
integer overflows and underflows for a given expression and an

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(Abstract value) V = I × I
(Overflow) I = {⊥𝑜 ,⊤𝑜 }
(Underflow) I = {⊥𝑢 ,⊤𝑢 }
V(𝑛) (𝑚) = ⟨⊥𝑜 ,⊥𝑢⟩

V(𝐸1 + 𝐸2) (𝑚) = ⟨⊤𝑜 ,𝑈1 ⊔𝑈2⟩
whereV(𝐸1) (𝑚) = ⟨_,𝑈1⟩
andV(𝐸2) (𝑚) = ⟨_,𝑈2⟩

V(𝐸1 − 𝐸2) (𝑚) = ⟨𝑂1 ⊔𝑂2,⊤𝑢⟩
whereV(𝐸1) (𝑚) = ⟨𝑂1, _⟩
andV(𝐸2) (𝑚) = ⟨𝑂2, _⟩

V(source) (𝑚) = ⟨⊥𝑜 ,⊥𝑢⟩

Figure 6: Abstract domains

abstract memory. Constant values (𝑛) are not overflowed and un-
derflowed. For addition (resp., subtraction) operators, we conser-
vatively approximate the value to be potentially overflowed (resp.,
underflowed).

For the five types of vulnerabilities, we use the following alarm
inspection function Q:

Q(𝑐) (𝑚) = Q𝑇 (𝑐) (𝑚) ∪ Q𝑂 (𝑐) (𝑚) ∪ Q𝑈 (𝑐) (𝑚) .
Each sub-function is defined as follows:

Q𝑇 (𝑐) (𝑚) = {𝑐0 | 𝑐0 ∈ 𝑇, ⟨𝑇, _, _⟩ = [[𝐸]] (𝑚)}
Q𝑂 (𝑐) (𝑚) = {𝑐0 | 𝑐0 ∈ 𝑇, ⟨𝑇,⊤𝑜 , _⟩ = [[𝐸]] (𝑚)}
Q𝑈 (𝑐) (𝑚) = {𝑐0, | 𝑐0 ∈ 𝑇, ⟨𝑇, _,⊤𝑢⟩ = [[𝐸]] (𝑚)}

where 𝑐 is a sink point and the abstract memory at 𝑐 is𝑚. Function
Q𝑇 collects all the source points of a sink point if the argument of
a sink function is tainted. Tracer uses Q𝑇 to detect format string,
command injection, and buffer overflow at printf-like functions,
exec-like functions, and memcpy-like functions, respectively. Q𝑂
and Q𝑈 additionally check whether the argument can be poten-
tially overflowed and underflowed, respectively. The functions are
used to detect malicious uses of memory allocations (e.g., malloc)
with an overflowed (i.e., unintentionally small) argument, and mem-
ory copies (e.g., memset) with an underflowed (i.e., unintentionally
large) argument.

4.2 Features and Similarity Measure

We have designed a set of features for tainted alarm traces that
are shown in Table 1. The set of features comprises two categories:
low-level and high-level features. The low-level features describe
the frequencies of the primitive operator (e.g., + and «) and the
standard library calls (e.g., strlen and strcmp) on a trace. On the
other hand, the high-level features are designed to capture deeper
contexts of traces. Instead of counting individual occurrences of
operators, the features describe relationships among expressions
and operators. Especially, we identify typical code patterns that
appear in patches of common vulnerabilities.

Tracer uses cosine similarity which is a well-known measure of
similarity between two vectors. Given two feature vectors 𝜋1 and
𝜋2, the similarity is defined as follows:

Sim(𝜋1, 𝜋2) =
𝜋1 · 𝜋2
| |𝜋1 | | | |𝜋2 | |

.

Table 1: Features of traces. 𝐸 and 𝐾 represent an arbitrary

expression and a constant, respectively.

Name Description

NumOfOpX The number of primitive operator X on the trace
NumOfLibX The number of calls to library X on the trace

LargerThanConst The number of expressions of the form 𝐸 > 𝐾 or 𝐸 ≥ 𝐾
SmallerThanConst The number of expressions of the form 𝐸 < 𝐾 or 𝐸 ≤ 𝐾
EqualToVar The number of expressions of the form 𝐸 == 𝐾
NotEqualToVar The number of expressions of the form 𝐸 != 𝐾
EqualToPercentage The number of expressions of the form 𝐸 == ‘%’

5 EXPERIMENT

Our evaluation is designed to answer the following questions:
• RQ1: How effective is Tracer for finding unknown recurring

vulnerabilities?
• RQ2: How accurate isTracer comparedwith existing approaches?
• RQ3: How scalable is Tracer to large programs?
All experiments were conducted on Linux machines with Intel
Xeon 2.90GHz. We set the timeout to one hour for running the
static analysis for each package.

5.1 Experimental Setup

5.1.1 Implementation. We implemented Tracer on top of Face-
book’s Infer analyzer [5]. The taint analyzer is designed as described
in the previous sections. We use pointer information computed by
Infer’s buffer overrun checker. Following Infer’s framework, our
taint analysis is designed to be a modular interprocedural analy-
sis (i.e., context-sensitive). For each benchmark, we run 20 tasks
in parallel. Our taint analysis checks five common vulnerabilities
described in Section 4: integer overflows, integer underflows, buffer
overflows, command injections and format string bugs.

5.1.2 Signature programs. We collected signature programs from
different sources of real-world and synthetic vulnerabilities:
(1) Real-world vulnerabilities: We collected 16 vulnerabilities

that can be reproduced by our taint analysis from the CVE
report [10] and prior work [18, 19].

(2) Juliet test suite [4]: Juliet Test Suite consists of a large set of
small programs each of which has a common vulnerability. We
used 4,437 programs that have the same types of vulnerabilities
handled by our analysis.

(3) Online tutorial: We collected 5 examples from online tutorials
on secure programming provided by OWASP [14].

5.1.3 Benchmarks. We evaluated Tracer using 273 Debian pack-
ages written in C/C++. The programs were collected from 16 com-
mon categories of Debian packages [12] such as web, sound, utils,
etc. For each category, we selected 20 packages such that our taint
analysis reports at least one alarm. For categories that have less
than 20 packages, we used all packages in the categories.

5.1.4 Baselines. We compare Tracer with state-of-the-art bug
detection tools from two categories: 1) clone-based vulnerability
detector 2) pattern-based static analyzer. For each category, we
chose one tool that was recently proposed and is publicly available:
VUDDY [27] and Github’s CodeQL [2]. We ran the baselines for the

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Tracer: Signature-based Static Analysis for Detecting Recurring Vulnerabilities ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

1 bool ssgLoadTGA(...) {

2 GLubyte header[18];

3 fread(header, 18, 1, f);

4 ...

5 int xsize = get16u(header + 12);

6 int ysize = get16u(header + 14);

7 int bits = header[16];

8 ...

9 // potential integer overflow

10 GLubyte *image = new GLubyte [(bits / 8) * xsize * ysize];

11 ...

12 }

13
14 inline int get16u(const GLubyte *ptr) { return (ptr[0] | (ptr[1] << 8)); }

Figure 7: An integer overflow discovered in libplib1-1.8.5 that
is similar to the one from sam2p-0.49.4 in Figure 1(b).

same types of vulnerabilities handled byTracer. For VUDDY, we se-
lected the reported alarms based on their CWE ID [11] that matches
the vulnerability types. For CodeQL, we ran all their security-related
queries dedicated to the corresponding CWE IDs [7] of the types.

5.2 RQ1: Effectiveness

This section shows how effective Tracer is for detecting previ-
ously unknown vulnerabilities in the Debian packages. For a fair
comparison, we count the number of sinks rather than source-sink
pairs as shown in the previous section, because the other baselines
only report sink points. We manually inspected all the reported
alarms whose similarity scores are larger than 0.85. Furthermore,
we randomly selected 100 alarms below the threshold and manually
inspected them.

Tracer found 281 new vulnerabilities in 62 packages. Among
them, 108 vulnerabilities have been confirmed by the developers
and 6 CVEs have been assigned as of writing this paper. Table 2
shows the true alarms confirmed by the developers2. We observed
that Tracer can detect various types of vulnerabilities using the
signatures from different sources including known CVEs or syn-
thetic vulnerabilities. Most of the true alarms have high similarity
scores. We will discuss the detailed distribution of the scores in the
next section.

Tracer is able to detect new vulnerabilities that are similar to
known ones. Figure 7 shows a vulnerability found in libplib1. The
signature that gives the highest score for the case is sam2p in Fig-
ure 1(b) which is itself a recurring vulnerability similar to the one in
Figure 1(a). We also notice that Tracer can effectively discover real-
world security bugs using synthetically generated toy examples.
Figure 8 shows an integer overflow vulnerability in dia detected by
Tracer and a signature vulnerability from Juliet test suite. Notice
that they have completely different syntactic structures. For exam-
ple, the vulnerability in dia involves three function calls including
one indirect call, as well as complicated pointer dereferences. On the
other hand, the synthetic code has an extremely simple structure.
However, they have the same root cause of the vulnerabilities. Both
of the programs read an external input using fscanf, and cause
an integer overflow by multiplying the input value with another
integer value. Tracer exactly detects the same vulnerable behavior
from the two programs and set the similarity score to 1.0.

2The full list of discovered vulnerabilities is available in the supplementary material.

1 void CWE190_Integer_Overflow__int64_t_fscanf_square_01_bad() {

2 int64_t data;

3 data = 0LL;

4 fscanf (stdin, "%" SCNd64, &data);

5 // potential integer overflow

6 int64_t result = data * data;

7 char *p = malloc(result);

8 }

(a) Juliet test suite (CWE-190)

1 static DiaObject *fig_read_polyline(FILE *file, DiaContext *ctx) {

2 fscanf(file, "%d␣%d␣%d␣%d␣%d␣%d␣%d␣%d␣%lf␣%d␣%d␣%d␣%d␣%d␣%d\n", ..., &npoints)

3 newobj = create_standard_polyline(npoints, ...);

4 ...

5 }

6
7 DiaObject *create_standard_polyline(int num_points, ...) {

8 pcd.num_points = num_points;

9 new_obj = otype->ops->create(NULL, &pcd, &h1, &h2);

10 ...

11 }

12
13 static DiaObject *polyline_create(Point *startpoint, void *user_data,

14 Handle **handle1, Handle **handle2) {

15 MultipointCreateData *pcd = (MultipointCreateData *)user_data;

16 polyconn_init(poly, pcd->num_points);

17 ...

18 }

19
20 void polyconn_init(PolyConn *poly, int num_points) {

21 // potential integer overflow

22 poly->points = g_malloc(num_points * sizeof(Point));

23 ...

24 }

(b) dia-0.97.3

Figure 8: An integer overflowbug india-0.97.3 and a signature
vulnerability from Juliet test suite.

Also, for other types of vulnerabilities, Tracer can detect re-
curring vulnerabilities that are similar to existing ones. Figure 9
depicts a buffer overflow error in gv. This bug happens because
the program reads an untrusted string using getenv that is used
to construct a new string via sprintf. The vulnerable behavior is
described in a tutorial by OWASP [36]. While the example code is
simple, the real-world vulnerability involves complicated aliases
and indirect assignments. Nevertheless, Tracer can find that the
essence of the bug is actually the same as the tutorial example as
the static analyzer estimates the detailed semantics.

Tracer’s similarity measure not only prioritizes similar bugs,
but also effectively suppresses false alarms. Figure 10(a) shows an
alarm that is falsely identified by our taint analysis in gnuplot. This
alarm looks similar to the vulnerability in Figure 9(a). However,
the call to sprintf is safe because the program always allocates
enough memory blocks using strlen and addition operations. This
behavior is captured by our features. Figure 10(b) shows another
example of a false alarm in grass. Since there is a bound checking
for external user inputs, the integer overflow will never occur. This
is also captured by one of the high-level features LargerThanConst.
Notice that these features only appear in the false alarm traces, not
in the signatures. This in turn leads to a lower score of these alarms
(0.82–0.88) and ranks them below many other true alarms.

Overall, the experimental results show that Tracer is effective
to detect semantically recurring vulnerabilities. In particular, our

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: List of new vulnerabilities detected by Tracer. Signature shows the sources of vulnerability signatures and Score

represents the similarity scores between the true alarms and the signatures. This table reports only true alarms confirmed by

the developers as of writing this paper and"indicates the vulnerabilities whose CVE IDs are assigned. The information of the

remaining vulnerabilities is available in the supplementary material.

Program Bugs Bug Type Score Signature CVE Assigned

bsdutils 1 Integer Overflow 1 Juliet-CWE190 "

dia 3 Integer Overflow 1 Juliet-CWE190 "

htmldoc 3 Integer Overflow 0.90-0.95 CVE-2017-9181 "

dcraw 3 Integer Overflow 0.93-0.94 CVE-2017-9181 "

libplib1 15 Integer Overflow 0.76-0.93 shntool-3.0.5 [18] "
libkrb5support0 2 Integer Overflow 1 Juliet-CWE190 -
groff 1 Integer Overflow 1 Juliet-CWE190 -
xsane 35 Integer Overflow 0.87-1.00 Juliet-CWE190 -
darktable 5 Integer Overflow 1 Juliet-CWE680 -
siril 20 Integer Overflow 0.87-1.00 Juliet-CWE680 -
nageru 1 Integer Overflow 0.87 CVE-2017-16663 -
sane 1 Integer Overflow 0.87 CVE-2017-9181 -
drawxtl 1 Integer Overflow 0.79 CVE-2017-9181 -
libmjpegutils-2.1-0 2 Buffer Overflow 1 OWASP tutorial -
libaudio2 1 Buffer Overflow 1 OWASP tutorial -
xbuffy 1 Buffer Overflow 1 OWASP tutorial -
xfig 2 Buffer Overflow 1 OWASP tutorial -
gv 4 Buffer Overflow 1 OWASP tutorial -
nedit 5 Buffer Overflow 1 OWASP tutorial -
nickle 1 Buffer Overflow 1 OWASP tutorial -
libpano13-3 1 Format String 0.59 mp3rename-0.6 [18] "

1 int main(void) {

2 char *ptr_h;

3 char h[64];

4 ptr_h = getenv("HOME");

5 if (ptr_h != NULL) {

6 // potential buffer overflow

7 sprintf(h, "Your␣home␣directory␣is:␣%s␣!", ptr_h);

8 printf("%s\n", h);

9 }

10 return 0;

11 }

(a) OWASP tutorial
1 XrmDatabase resource_buildDatabase(...) {

2 char locale1[100];

3 char loc_lang[100];

4 char *locale = getenv("LC_ALL");

5 String s = getenv("XUSERFILESEARCHPATH");

6 char *cP = loc_lang;

7 char *cL = locale;

8 ...

9 while (*cL) {

10 ...

11 *cP++ = *cL++;

12 }

13 *cP = 0;

14
15 if (s == NULL || !strcasecmp(s, "False")) {

16 // potential buffer overflow

17 sprintf(locale1, "noint:%s%s", loc_lang, ...);

18 ...

19 }

20 }

(b) gv-3.7.4

Figure 9: A buffer overflow bug in gv-3.7.4 and a signature

vulnerability from an OWASP tutorial.

1 generic *gp_alloc(size_t size, ...) { } // wrapper of malloc

2
3 static int LUA_init_lua(void) {

4 char *script_fqn;

5 char *gp_lua_dir = getenv("GNUPLOT_LUA_DIR");

6 ...

7 // allocation with a large enough length

8 script_fqn = gp_alloc(strlen(gp_lua_dir) + ... + 2, ...);

9 // potential buffer overflow (false alarm)

10 sprintf(script_fqn, "%s%c%s", gp_lua_dir, ...);

11 ...

12 }

(a) gnuplot-5.2.8
1 SHPHandle SHPAPI_CALL SHPOpenLL(...) {

2 SHPHandle psSHP;

3 uchar *pabyBuf = (uchar *)malloc(100);

4 fread(pabyBuf, 100, 1, psSHP->fpSHX);

5 psSHP->nRecords = pabyBuf[27] + pabyBuf[26] * 256 + ...;

6 ...

7 // bound checking

8 if (psSHP->nRecords > 256000000) {

9 return (NULL);

10 }

11 ...

12 // false alarm (integer overflow)

13 int32 *panSHX = (int32 *)malloc(sizeof(int32) * 2 * psSHP->nRecords);

14 }

(b) grass-7.8.2

Figure 10: False alarms reported by Tracer

trace-based similarity measure powered by the static analysis is
robust to syntactic variants. Thus, Tracer can report recurring vul-
nerabilities with high similarity scores even though two programs
have significantly different syntactic characteristics.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Tracer: Signature-based Static Analysis for Detecting Recurring Vulnerabilities ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Tracer95 Tracer90 Tracer85 Tracer0 VUDDYO VUDDYS
0

100

200

300

400

500

N
um

b
er

of
A

la
rm

s

151
189

248
281

2 0
23 33

73

140

6 9

1723

true positive

false positive

unknown

Figure 11: Comparing the accuracy of Tracer and VUDDY.

1 unsigned sget4 (unsigned char *s) {

2 ...

3 return s[0] << 24 | s[1] << 16 | s[2] << 8 | s[3];

4 }

5
6 unsigned get4() {

7 unsigned char str[4] = { 0xff,0xff,0xff,0xff };

8 fread (str, 1, 4, ifp);

9 return sget4((unsigned char *)str);

10 }

11
12 void foveon_load_camf() {

13 unsigned wide = get4();

14 unsigned high = get4();

15 ...

16 // potential integer overflow

17 char *meta_data = (char *) malloc(wide * high * 3/2);

18 ...

19 }

Figure 12: A vulnerability found in dcraw-9.28 and

rawtherapee-5.8.

5.3 RQ2: Comparison with other approaches

This section compares the accuracy of Tracer with the state-of-
the-art tools. Figure 11 shows the performance of each analyzer.

5.3.1 Comparison within Tracer variants. First, we instantiate
Tracer with four variants with different thresholds of the sim-
ilarity score: Tracer95, Tracer90, Tracer85, and Tracer0. Each
Tracer𝑛 filters out all the alarms reported by the static analyzer
whose similarity scores are less than the threshold. For example,
Tracer95 reports all alarms whose scores are larger than 0.95 and
Tracer0 does not suppress any alarms.

The similarity-based score of Tracer effectively filters out a
large number of false positives while retaining many real bugs. The
underlying taint analysis (Tracer0) is able to detect 281 vulnera-
bilities interspersed with many alarms (2,144). However, Tracer
with a high threshold significantly suppresses a large number of
false alarms. For example, Tracer95 reports only 23 false positives
while detecting 151 vulnerabilities. If a lower threshold is chosen
such as 0.85, the number of false positives increases compared to
Tracer95 but the false positive rate is still significantly lower than
Tracer0.

5.3.2 Comparison to VUDDY. For VUDDY, we established two dif-
ferent settings in ways to collect the vulnerability database for clone
detection. VUDDYO is based on the original database provided by
the official web service that has 1,764 CVEs as signatures [21]. To
throw away the effect of the quality of the database per se, we also
tried VUDDYS that uses our own signature database. Following

1 void badVaSink(char *data, ...) {

2 va_list args;

3 va_start(args, data);

4 vfprintf(stdout, data, args);

5 va_end(args);

6 }

(a) Juliet test suite (CWE-134)

1 void lqt_dump(char * format, ...) {

2 va_list argp;

3 va_start(argp, format);

4 vfprintf(stdout, format, argp);

5 va_end(argp);

6 }

(b) libquicktime2-1.2.4

Figure 13: A code clone detected by VUDDYS

the same methodology as VUDDYO , we collected all the vulnerable
functions that are patched in the later versions.

VUDDYO reports 6 false positives out of 8 alarms. The reason
of the false alarms is due to a practical issue regarding establishing
their databases. VUDDYO collects all the modified functions in
patch commits of known CVEs as signatures. However, a single
commit may contain numerous irrelevant modifications. This leads
to spurious signatures that match non-vulnerable functions. In fact,
all of the false positives from VUDDYO turned out to be the case.

The remaining 2 true alarms of VUDDYO are found in dcraw and
rawtherapee, both being exactly the same functions as shown in Fig-
ure 12. The function foveon_load_camf reads wide and high from
an external file (line 13–14), and allocates memory after multiplica-
tion (line 17) that can cause a potential integer overflow. VUDDYO
reports that this bug is originated from the same vulnerable source
(LibRaw-demosaic-pack-GPL2, CVE-2017-6889). Interestingly, the
bug is also captured by Tracer with a high similarity score (0.92)
even though Tracer does not have the origin in the signature
database. Instead, Tracer captures that the vulnerability is simi-
lar to the one in sam2p shown in Figure 1(b). Notice that the bug
from sam2p has a totally different syntactic structure from the code
in Figure 12. This example demonstrates that Tracer effectively
generalizes known vulnerability patterns to detect unseen ones.

VUDDYS reports 9 false alarms. This shows that VUDDYS may
report false positives even if the database is carefully established.
The behavior of a function often depends on the context in which
it is used. For instance, the function in Figure 13(a) is a signature
in our database. If the argument data, which is passed to the sec-
ond argument of vfprintf, can be controlled by an attacker, this
function causes format string vulnerability. With this signature,
VUDDYS detects function lqt_dump in Figure 13(b) as a recurring
vulnerability. However, according to our manual investigation, all
the calls to lqt_dump takes only safe format arguments. Therefore
this function is not vulnerable in the context of libquicktime2.

VUDDY cannot detect most of the recurring vulnerabilities de-
tected by Tracer. This is mainly because VUDDY is based on
a syntactic matching algorithm at the function-level granularity.
However, most of the vulnerabilities detected by Tracer involve
multiple functions and have significantly different syntactic struc-
tures from signatures. Such characteristics in real-world programs
hinder VUDDY from detecting semantically recurring vulnerabili-
ties.

5.3.3 Comparison to CodeQL. In this section, we compare Tracer
to CodeQL. Because CodeQL works differently from Tracer (i.e.,
the use of signatures) and there are no standard benchmarks for
recurring vulnerabilities with labels, we believe that it is not fair
to directly compare their results. Instead, we measure how many
vulnerabilities detected by Tracer are also detected by CodeQL.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Here we intend not to compare their accuracy directly but to argue
that Tracer can detect non-trivial vulnerabilities.

Our experiments show that Tracer can effectively detect re-
curring vulnerabilities that are not detected by CodeQL, which is
based on human-written bug patterns. In total, CodeQL reports
3,557 alarms from the benchmark programs. Among all the 281
vulnerabilities detect by Tracer, CodeQL can only detect 97 bugs.
This implies that it is challenging to manually strike a balance
between false positives and negatives in practice. Static analysis
designers typically introduce heuristics to filter out false positives.
Such heuristics often make the analyzer miss real bugs when com-
plicated program behavior is involved such as pointer dereferences,
indirect function calls, or loops. On the other hand, Tracer does
not use such hand-crafted heuristics but relies on the similarity
measure that effectively prioritizes recurring vulnerabilities given
signatures.

5.4 RQ3: Scalability

This section evaluates the scalability of Tracer to large programs.
We measure the whole computation time of the static analysis and
similarity checking for each benchmark. Then, we report the run-
ning time of Tracer according to the size of program in Figure 14.

The results indicate that Tracer is scalable to large programs.
On average, the static analysis takes 115.86 seconds for each pack-
age. The time spent for the similarity checking is at most 2.71
seconds which is a negligible cost compared to the overall proce-
dure. Although the analysis finishes within 20 minutes for most
of the packages, some packages take considerably more time than
the average. For example, hugin takes about 51 minutes. This is
mainly because of the imprecision of function pointer resolution
that leads to analyzing too many functions via spurious indirect
calls. Another exceptional example is gettext that takes only 37
seconds while it comprises 982K lines of code. Despite the huge
code size, the program consists of a large number of small library
functions. Thus, the modular analysis can be highly parallelized.

6 THREATS TO VALIDITY

The benchmarks and signature vulnerabilities used in our experi-
ments may not be representative. We used open source programs
written in C/C++. Thus, it may have different results for programs
in other languages or from the industry. However, we collected the
benchmarks from a wide range of categories, and signatures are
also from diverse sources of vulnerability data.

We have restricted our attention to specific types of vulnera-
bilities that can be discovered by our taint analysis. We need to
generalize Tracer to arbitrary types of vulnerabilities in future
work. However, the types of vulnerabilities used in our experi-
ments are common in practice and also targeted by other work for
vulnerability detection [18, 19, 45].

7 RELATEDWORK

Ourwork is inspired by a large body of research on recurring vulner-
ability detection. All the existing work aims at discovering recurring
vulnerabilities via code reuse [22, 27, 32, 38, 48]. These approaches
transform buggy code fragments within a certain boundary (e.g.,
functions) into various forms of vulnerability signatures such as

0.0 0.2 0.4 0.6 0.8 1.0
Size of program (MLOC)

0

500

1000

1500

2000

2500

3000

Ti
m

e(
s)

Figure 14: Running time of Tracer by program size.

hashes [22, 27] or dependency graphs [38, 48]. Then they search
for similar representations of code fragments in the programs un-
der investigation. On the other hand, Tracer is designed to detect
vulnerabilities that share the semantically same root cause. We use
a sophisticated static analysis that captures vulnerable semantics
along arbitrarily long paths.

Most of the existing static analyses that take into account code
patterns highly rely on manual design [2, 3, 16]. FindBugs [3], Spot-
Bugs [1], and ErrorProne [16] specify hundreds of human-written
patterns each of which describes a specific buggy scenario. To
reduce the engineering burden, CodeQL [2] introduces a query
language to succinctly define bug patterns. However, it is still non-
trivial for ordinary developers to write desired queries for their
own purposes [33]. Instead, Tracer is based on a general static
analysis designed by experts that provides an accessible framework
for developers without static analysis expertises.

Researchers have proposed many techniques to detect code
clones ranging from syntactic ones [6, 9, 20, 23, 25, 29, 30, 40, 41, 44,
47] to semantic ones [15, 24, 26, 28, 42, 46, 49]. Since their goal is
to detect generally similar code fragments, they are not suitable to
accurately find recurring vulnerabilities even via code reuse [27, 48].
Instead, our work is designed to detect semantically similar vulner-
abilities between two programs using a static analysis combined
with a trace-based similarity measure.

Our similarity checking method can be understood as an alarm
ranking system for static analysis. There have been many alarm
ranking methods proposed to lower the user’s alarm inspection bur-
dens. Existing approaches rank alarms by their confidence [31, 39],
expected reactions from developers [17] or relevance to a specific
commit [19]. To our best knowledge, none of the existing work
ranks alarms by similarity to a specific known vulnerability.

8 CONCLUSION

We proposed Tracer, a framework for detecting recurring vul-
nerabilities. Tracer is based on a static analysis that discovers
potentially vulnerable traces in a target program. Each candidate
trace is then compared with known vulnerabilities collected from
various sources. Our empirical study shows that Tracer can accu-
rately detect semantically similar vulnerabilities from a variety of
open source programs. We anticipate that Tracer will allow devel-
opers to easily prevent recurring vulnerabilities without requiring
static analysis expertise.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Tracer: Signature-based Static Analysis for Detecting Recurring Vulnerabilities ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES

[1] 2021. SpotBugs. https://spotbugs.github.io
[2] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. 2016.

QL: Object-oriented Queries on Relational Data. European Conference on Object-
Oriented Programming (ECOOP 2016).

[3] Nathaniel Ayewah, David Hovemeyer, J David Morgenthaler, John Penix, and
William Pugh. 2008. Using Static Analysis to Find Bugs. IEEE Softw. 25 (2008).
Issue 5.

[4] Paul Black. 2018. Juliet 1.3 Test Suite: Changes From 1.2.
[5] Cristiano Calcagno and Dino Distefano. 2011. Infer: An Automatic Program Veri-

fier for Memory Safety of C Programs. NASA Formal Methods - Third International
Symposium (NFM) 6617.

[6] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scala-
bility simultaneously in detecting application clones on Android markets. 36th
International Conference on Software Engineering (ICSE 2014).

[7] CodeQL. 2021. CodeQL CWE queries. https://github.com/github/codeql/tree/
main/cpp/ql/src/Security/CWE

[8] CodeQL. 2021. TaintedAllocationSize.ql. https://github.com/github/codeql/
blob/main/cpp/ql/src/Security/CWE/CWE-190/TaintedAllocationSize.ql

[9] James R Cordy and Chanchal K Roy. 2011. The NiCad Clone Detector. The 19th
IEEE International Conference on Program Comprehension (ICPC 2011).

[10] The MITRE Corporation. 2021. Common Vulnerabilities and Exposures.
[11] The MITRE Corporation. 2021. Common Weakness Enumeration.
[12] Debian. 2021. Debian Packages. https://packages.debian.org/sid/
[13] Will Dietz, Peng Li, John Regehr, and Vikram S Adve. 2012. Understanding

integer overflow in C/C++. 34th International Conference on Software Engineering
(ICSE 2012).

[14] The OWASP Foundation. 2021. Attacks.
[15] Mark Gabel, Lingxiao Jiang, and Zhendong Su. 2008. Scalable detection of

semantic clones. 30th International Conference on Software Engineering (ICSE
2008).

[16] Google. 2021. Error Prone. https://errorprone.info
[17] Quinn Hanam, Lin Tan, Reid Holmes, and Patrick Lam. 2014. Finding patterns in

static analysis alerts: improving actionable alert ranking. 11thWorking Conference
on Mining Software Repositories (MSR 2014).

[18] Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. 2017. Machine-learning-guided se-
lectively unsound static analysis. Proceedings of the 39th International Conference
on Software Engineering (ICSE 2017).

[19] Kihong Heo, Mukund Raghothaman, Xujie Si, and Mayur Naik. 2019. Continu-
ously reasoning about programs using differential Bayesian inference. Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2019).

[20] Benjamin Hummel, Elmar Jürgens, Lars Heinemann, and Michael Conradt. 2010.
Index-based code clone detection: incremental, distributed, scalable. 26th IEEE
International Conference on Software Maintenance (ICSM 2010).

[21] IoTcube. 2021. IoTcube. https://iotcube.korea.ac.kr
[22] Jiyong Jang, Abeer Agrawal, and David Brumley. 2012. ReDeBug: Finding Un-

patched Code Clones in Entire OS Distributions. IEEE Symposium on Security
and Privacy (S&P 2012).

[23] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stéphane Glondu. 2007.
DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones. 29th
International Conference on Software Engineering (ICSE 2007).

[24] Lingxiao Jiang and Zhendong Su. 2009. Automatic mining of functionally equiv-
alent code fragments via random testing. Proceedings of the 8th International
Symposium on SoftwareTesting and Analysis (ISSTA 2009).

[25] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for Large Scale Source
Code. IEEE Trans. Software Eng. 28 (2002). Issue 7.

[26] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwangkeun Yi. 2011. MeCC:
memory comparison-based clone detector. Proceedings of the 33rd International
Conference on Software Engineering (ICSE 2011).

[27] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A
Scalable Approach for Vulnerable Code Clone Discovery. IEEE Symposium on
Security and Privacy (S&P 2017).

[28] Raghavan Komondoor and Susan Horwitz. 2001. Using Slicing to Identify Dupli-
cation in Source Code. Proceedings of 8th International Static Analysis Symposium
(SAS 2001) 2126.

[29] Rainer Koschke. 2014. Large-scale inter-system clone detection using suffix trees
and hashing. J. Softw. Evol. Process. 26 (2014). Issue 8.

[30] Rainer Koschke, Raimar Falke, and Pierre Frenzel. 2006. Clone Detection Using
Abstract Syntax Suffix Trees. 13th Working Conference on Reverse Engineering
(WCRE 2006).

[31] Ted Kremenek and Dawson R Engler. 2003. Z-Ranking: Using Statistical Analysis
to Counter the Impact of Static Analysis Approximations. Proceedings of 10th
International Static Analysis Symposium (SAS 2003) 2694.

[32] Jingyue Li and Michael D Ernst. 2012. CBCD: Cloned buggy code detector. 34th
International Conference on Software Engineering (ICSE 2012).

[33] Ziyang Li, Aravind Machiry, Binghong Chen, Mayur Naik, Ke Wang, and Le
Song. 2021. ARBITRAR : User-Guided API Misuse Detection. IEEE Symposium
on Security and Privacy (S&P 2021) (2021).

[34] Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjàVu: a map of code duplicates on GitHub.
Proc. ACM Program. Lang. 1 (2017). Issue OOPSLA.

[35] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Dumi-
tras. 2015. The Attack of the Clones: A Study of the Impact of Shared Code on
Vulnerability Patching. IEEE Symposium on Security and Privacy (S&P 2015).

[36] OWASP. 2021. Buffer Overflow via Environment Variables. (2021). https://owasp.
org/www-community/attacks/Buffer_Overflow_via_Environment_Variables

[37] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020. Fuzzing
JavaScript Engines with Aspect-preserving Mutation. IEEE Symposium on Secu-
rity and Privacy (S&P 2020).

[38] NamHPham, Tung ThanhNguyen, Hoan AnhNguyen, and Tien NNguyen. 2010.
Detection of recurring software vulnerabilities. 25th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2010).

[39] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018.
User-guided program reasoning using Bayesian inference. Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2018).

[40] Hitesh Sajnani, Vaibhav Saini, and Cristina Videira Lopes. 2015. A parallel and
efficient approach to large scale clone detection. J. Softw. Evol. Process. 27 (2015).
Issue 6.

[41] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. SourcererCC: scaling code clone detection to big-code. Proceedings
of the 38th International Conference on Software Engineering (ICSE 2016).

[42] Abdullah Sheneamer and Jugal Kalita. 2016. Semantic Clone Detection Using
Machine Learning. 15th IEEE International Conference on Machine Learning and
Applications (ICMLA 2016).

[43] Maddie Stone. 2021. Déjà vu-lnerability. https://googleprojectzero.blogspot.
com/2021/02/deja-vu-lnerability.html

[44] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K Roy.
2018. CCAligner: a token based large-gap clone detector. Proceedings of the 40th
International Conference on Software Engineering (ICSE 2018).

[45] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M Frans Kaashoek.
2012. Improving Integer Security for Systems with KINT. 10th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 2012).

[46] Huihui Wei and Ming Li. 2018. Positive and Unlabeled Learning for Detecting
Software Functional Clones with Adversarial Training. Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI 2018).

[47] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. Proceedings of the
31st IEEE/ACM International Conference on AutomatedSoftware Engineering (ASE
2016).

[48] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li,
Binghong Liu, Yang Liu, Wei Huo, Wei Zou, and Wenchang Shi. 2020. MVP:
Detecting Vulnerabilities using Patch-Enhanced Vulnerability Signatures. 29th
USENIX Security Symposium (USENIX Security 2020).

[49] Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and Qianxiang Wang. 2019.
Neural detection of semantic code clones via tree-based convolution. Proceedings
of the 27th International Conference on Program Comprehension (ICPC 2019).

11

https://spotbugs.github.io
https://github.com/github/codeql/tree/main/cpp/ql/src/Security/CWE
https://github.com/github/codeql/tree/main/cpp/ql/src/Security/CWE
https://github.com/github/codeql/blob/main/cpp/ql/src/Security/CWE/CWE-190/TaintedAllocationSize.ql
https://github.com/github/codeql/blob/main/cpp/ql/src/Security/CWE/CWE-190/TaintedAllocationSize.ql
https://packages.debian.org/sid/
https://errorprone.info
https://iotcube.korea.ac.kr
https://owasp.org/www-community/attacks/Buffer_Overflow_via_Environment_Variables
https://owasp.org/www-community/attacks/Buffer_Overflow_via_Environment_Variables
https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html
https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 3: List of new vulnerabilities detected by Tracer. Signature shows the sources of vulnerability signatures and Score

represents the similarity scores between the true alarms and the signatures.

Program Bugs Bug Type Score Signature CVE Assigned

4ti2 3 Integer Overflow 0.71-1.00 Juliet-CWE190 -
bowtie2 1 Integer Overflow 0.74 CVE-2017-9181 -
bsdutils 1 Command Injection 0.86 CVE-2016-10729 -
bsdutils 1 Integer Overflow 1 Juliet-CWE190 "
bwbasic 1 Buffer Overflow 0.44 CVE-2018-1100 -
coinor-libclp1 6 Integer Overflow 1 Juliet-CWE190 -
crafty 1 Integer Overflow 0.86 CVE-2017-1000229 -
cron 1 Command Injection 0.68 OWASP tutorial -
crrcsim 2 Integer Overflow 0.85-0.90 CVE-2017-16663 -
darktable 5 Integer Overflow 1 Juliet-CWE680 -
dcraw 3 Integer Overflow 0.93-0.94 CVE-2017-9181 "

dia 3 Integer Overflow 1 Juliet-CWE190 "
drawxtl 1 Integer Overflow 0.79 CVE-2017-9181 -
dvbstreamer 1 Buffer Overflow 1 OWASP tutorial -
elvis-tiny 3 Buffer Overflow 0.50-1.00 OWASP tutorial -
gap-guava 2 Integer Overflow 1 Juliet-CWE190 -
gnuplot 2 Format String 0.82 Juliet-CWE134 -
grass 22 Buffer Overflow 0.41-1.00 OWASP tutorial -
groff 1 Integer Overflow 1 Juliet-CWE190 -
gv 4 Buffer Overflow 1 OWASP tutorial -
htmldoc 3 Integer Overflow 0.90-0.95 CVE-2017-9181 "
hugin 9 Integer Overflow 0.87-1.00 Juliet-CWE190 -
ispell 4 Buffer Overflow 1 OWASP tutorial -
libaudio2 1 Buffer Overflow 1 OWASP tutorial -
libfreeimage3 1 Buffer Overflow 0.83 CVE-2017-6313 -
libkrb5support0 2 Integer Overflow 1 Juliet-CWE190 -
liblinear-tools 1 Buffer Overflow 0.3 CVE-2018-1100 -
liblinear-tools 2 Integer Overflow 0.93-1.00 Juliet-CWE190 -
liblrs0 1 Integer Overflow 0.91 Juliet-CWE191 -
libmjpegutils-2.1-0 2 Buffer Overflow 1 OWASP tutorial -
libmount1 1 Command Injection 0.72 CVE-2015-9059 -
libmount1 1 Integer Overflow 1 Juliet-CWE190 -
libpano13-3 1 Format String 0.59 mp3rename-0.6 [18] "
libpano13-3 3 Integer Overflow 0.87 CVE-2017-16663 -
libplib1 15 Integer Overflow 0.76-0.93 shntool-3.0.5 [18] "
libquicktime2 22 Integer Overflow 0.85-0.95 CVE-2017-9181 -
lp-solve 7 Integer Overflow 1 Juliet-CWE190 -
mdadm 1 Buffer Overflow 0.16 CVE-2019-14523 -
minidlna 1 Integer Overflow 0.94 Juliet-CWE190 -
nageru 1 Integer Overflow 0.87 CVE-2017-16663 -
nedit 5 Buffer Overflow 1 OWASP tutorial -
newmail 1 Format String 0.82 Juliet-CWE134 -
nickle 1 Buffer Overflow 1 OWASP tutorial -
nickle 1 Command Injection 0.67 Juliet-CWE78 -
octave-nan 11 Integer Overflow 0.87-1.00 Juliet-CWE190 -
printer-driver-foo2zjs 1 Integer Underflow 0.94 Juliet-CWE191 -
r-cran-lpsolve 7 Integer Overflow 1 Juliet-CWE190 -

A COMPLETE LIST OF VULNERABILITIES

Table 3 and Table 4 show all bugs that are found by Tracer.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Tracer: Signature-based Static Analysis for Detecting Recurring Vulnerabilities ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 4: List of new vulnerabilities detected by Tracer.

Program Bugs Bug Type Score Signature CVE Assigned

rawtherapee 5 Integer Overflow 0.86-1.00 Juliet-CWE680 -
rlwrap 1 Command Injection 0.82 Juliet-CWE78 -
rtcw 1 Buffer Overflow 0.4 CVE-2018-1100 -
sane 1 Integer Overflow 0.87 CVE-2017-9181 -
scheme48 1 Integer Overflow 0.85 CVE-2009-1570 -
seaview 1 Buffer Overflow 0.56 CVE-2018-1100 -
siril 20 Integer Overflow 0.87-1.00 Juliet-CWE680 -
siril 3 Integer Underflow 0.82 Juliet-CWE191 -
snap 2 Buffer Overflow 1 OWASP tutorial -
snap 1 Integer Overflow 1 Juliet-CWE680 -
stk 1 Integer Overflow 0.87 shntool-3.0.5 [18] -
sweed 4 Integer Overflow 1 Juliet-CWE190 -
tcliis 1 Buffer Overflow 1 OWASP tutorial -
tome 8 Format String 0.96 CVE-2015-8106 -
vacation 1 Command Injection 0.67 Juliet-CWE78 -
w3m 1 Format String 0.96 CVE-2015-8106 -
wily 7 Buffer Overflow 0.47-1.00 OWASP tutorial -
xbuffy 1 Buffer Overflow 1 OWASP tutorial -
xfig 2 Buffer Overflow 1 OWASP tutorial -
xsane 35 Integer Overflow 0.87-1.00 Juliet-CWE190 -
xwpe 1 Buffer Overflow 1 OWASP tutorial -
xwpe 1 Command Injection 0.87 Juliet-CWE78 -
xwpe 3 Integer Overflow 0.87-0.89 Juliet-CWE190 -
zangband 1 Buffer Overflow 0.77 CVE-2017-6313 -
zangband 7 Format String 0.97 CVE-2015-8106 -
zangband 1 Integer Overflow 0.93 CVE-2017-9181 -

13

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Examples
	2.2 Our Approach

	3 Framework
	3.1 Program
	3.2 Generic Taint Analysis
	3.3 Data Dependency Graph and Tainted Traces
	3.4 Feature Vector and Similarity Score

	4 Instantiation
	4.1 Abstract Domains and Semantics
	4.2 Features and Similarity Measure

	5 Experiment
	5.1 Experimental Setup
	5.2 RQ1: Effectiveness
	5.3 RQ2: Comparison with other approaches
	5.4 RQ3: Scalability

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References
	A Complete list of vulnerabilities

